Solveeit Logo

Question

Question: Find the equation of plane containing the line \[2x - y + z - 3 = 0\]; \[3x + y + z = 5\] and at a d...

Find the equation of plane containing the line 2xy+z3=02x - y + z - 3 = 0; 3x+y+z=53x + y + z = 5 and at a distance of 16\dfrac{1}{{\sqrt 6 }} from the point (2,1,1)\left( {2,1, - 1} \right).
A. 2xy+z3=02x - y + z - 3 = 0
B. 62x+29y+19z105=062x + 29y + 19z - 105 = 0
C. 3x+y+z=53x + y + z = 5
D. None of these

Explanation

Solution

In this problem, first we need to find the equation of the plane containing the given two lines. Next, find the distance of the plain from the given points and hence find the equations of the planes.

Complete step-by-step answer:
The equation of the plane containing the lines 2xy+z3=02x - y + z - 3 = 0 and 3x+y+z=53x + y + z = 5 is as follows:

2xy+z3+λ(3x+y+z5)=0 2xy+z3+3xλ+yλ+zλ5λ=0 (2+3λ)x+(λ1)y+(λ+1)z35λ=0  \,\,\,\,\,\,2x - y + z - 3 + \lambda \left( {3x + y + z - 5} \right) = 0 \\\ \Rightarrow 2x - y + z - 3 + 3x\lambda + y\lambda + z\lambda - 5\lambda = 0 \\\ \Rightarrow \left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0 \\\

Since, the distance of the plane (2+3λ)x+(λ1)y+(λ+1)z35λ=0\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0 from the points (2,1,1)\left( {2,1, - 1} \right) is16\dfrac{1}{{\sqrt 6 }}, it can be written as follows:

2(2+3λ)+1(λ1)1(λ+1)35λ(2+3λ)2+(λ1)2+(λ+1)2=16 4+6λ+λ1λ135λ4+9λ2+12λ+1+λ22λ+1+λ2+2λ=16 λ111λ2+12λ+6=16 6(λ1)2=11λ2+12λ+6 6(1+λ22λ)=11λ2+12λ+6  \,\,\,\,\,\left| {\dfrac{{2\left( {2 + 3\lambda } \right) + 1\left( {\lambda - 1} \right) - 1\left( {\lambda + 1} \right) - 3 - 5\lambda }}{{\sqrt {{{\left( {2 + 3\lambda } \right)}^2} + {{\left( {\lambda - 1} \right)}^2} + {{\left( {\lambda + 1} \right)}^2}} }}} \right| = \dfrac{1}{{\sqrt 6 }} \\\ \Rightarrow \left| {\dfrac{{4 + 6\lambda + \lambda - 1 - \lambda - 1 - 3 - 5\lambda }}{{\sqrt {4 + 9{\lambda ^2} + 12\lambda + 1 + {\lambda ^2} - 2\lambda + 1 + {\lambda ^2} + 2\lambda } }}} \right| = \dfrac{1}{{\sqrt 6 }} \\\ \Rightarrow \left| {\dfrac{{\lambda - 1}}{{\sqrt {11{\lambda ^2} + 12\lambda + 6} }}} \right| = \dfrac{1}{{\sqrt 6 }} \\\ \Rightarrow 6{\left( {\lambda - 1} \right)^2} = 11{\lambda ^2} + 12\lambda + 6 \\\ \Rightarrow 6\left( {1 + {\lambda ^2} - 2\lambda } \right) = 11{\lambda ^2} + 12\lambda + 6 \\\

Further, simplify the above equation.

6+6λ212λ=11λ2+12λ+6 5λ2+24λ=0 λ(5λ+24)=0 λ=0or245  \,\,\,\,\,6 + 6{\lambda ^2} - 12\lambda = 11{\lambda ^2} + 12\lambda + 6 \\\ \Rightarrow 5{\lambda ^2} + 24\lambda = 0 \\\ \Rightarrow \lambda \left( {5\lambda + 24} \right) = 0 \\\ \Rightarrow \lambda = 0\,\,{\text{or}}\,\,\dfrac{{ - 24}}{5} \\\

Now, substitute 0 for λ\lambda in equation of plane(2+3λ)x+(λ1)y+(λ+1)z35λ=0\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0.

(2+3(0))x+((0)1)y+((0)+1)z35(0)=0 2xy+z3=0  \,\,\,\,\,\left( {2 + 3\left( 0 \right)} \right)x + \left( {\left( 0 \right) - 1} \right)y + \left( {\left( 0 \right) + 1} \right)z - 3 - 5\left( 0 \right) = 0 \\\ \Rightarrow 2x - y + z - 3 = 0 \\\

Further, substitute 245- \dfrac{{24}}{5} for λ\lambda in equation of plane(2+3λ)x+(λ1)y+(λ+1)z35λ=0\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0.

(2+3(245))x+((245)1)y+((245)+1)z35(245)=0 625x295y195z3+24=0 625x295y195z+21=0 62x29y19z+105=0 62x+29y+19z105=0  \,\,\,\,\,\left( {2 + 3\left( { - \dfrac{{24}}{5}} \right)} \right)x + \left( {\left( { - \dfrac{{24}}{5}} \right) - 1} \right)y + \left( {\left( { - \dfrac{{24}}{5}} \right) + 1} \right)z - 3 - 5\left( { - \dfrac{{24}}{5}} \right) = 0 \\\ \Rightarrow - \dfrac{{62}}{5}x - \dfrac{{29}}{5}y - \dfrac{{19}}{5}z - 3 + 24 = 0 \\\ \Rightarrow - \dfrac{{62}}{5}x - \dfrac{{29}}{5}y - \dfrac{{19}}{5}z + 21 = 0 \\\ \Rightarrow - 62x - 29y - 19z + 105 = 0 \\\ \Rightarrow 62x + 29y + 19z - 105 = 0 \\\

Since, the equation of the planes are 2xy+z3=02x - y + z - 3 = 0
and62x+29y+19z105=062x + 29y + 19z - 105 = 0
, therefore, option A and B are correct.

Note: The equation of the plane containing two lines L1{L_1} and L2{L_2} isL1+λL2=0{L_1} + \lambda {L_2} = 0. There are two planes containing the same lines and at the same distance from the given point.