Solveeit Logo

Question

Question: Find the equation of circle passing through the intersection of \({{x}^{2}}+{{y}^{2}}=4\) and \({{x}...

Find the equation of circle passing through the intersection of x2+y2=4{{x}^{2}}+{{y}^{2}}=4 and x2+y22x4y+4=0{{x}^{2}}+{{y}^{2}}-2x-4y+4=0 and touching the line x+2y=0x+2y=0

Explanation

Solution

Equation of family of circle isS1+λS2=0{{S}_{1}}+\lambda {{S}_{2}}=0. So, there can be infinite number of circles passing through the intersection points of x2+y2=4{{x}^{2}}+{{y}^{2}}=4and x2+y22x4y+4=0{{x}^{2}}+{{y}^{2}}-2x-4y+4=0. By substituting values in the Family of circle equation we get the centre of the circle. Hence, we can calculate radius using (x)2+(y)2c\sqrt{{{\left( x \right)}^{2}}+{{\left( y \right)}^{2}}-c} where x and y are coordinates and c is the constant in the equation.
Then find the perpendicular distance between radius and tangent to get the value of λ\lambda .
Then substitute this value in the equation of the family of circles.

Complete step by step answer:
Let us consider,
S1=x2+y24{{S}_{1}}={{x}^{2}}+{{y}^{2}}-4 and S2=x2+y22x4y+4{{S}_{2}}={{x}^{2}}+{{y}^{2}}-2x-4y+4
Now substitute this value in the family of circles equation.
S1+λS2=0 x2+y22x4y+4+λ(x2+y24)=0 \begin{aligned} & {{S}_{1}}+\lambda {{S}_{2}}=0 \\\ & {{x}^{2}}+{{y}^{2}}-2x-4y+4+\lambda \left( {{x}^{2}}+{{y}^{2}}-4 \right)=0 \\\ \end{aligned}
(λ+1)x2+(λ+1)y22x4y4λ+4=0......(1)\left( \lambda +1 \right){{x}^{2}}+\left( \lambda +1 \right){{y}^{2}}-2x-4y-4\lambda +4=0......(1)
Now divide the whole equation by (λ+1)\left( \lambda +1 \right),
(λ+1)x2+(λ+1)y22x4y4λ+4=0\left( \lambda +1 \right){{x}^{2}}+\left( \lambda +1 \right){{y}^{2}}-2x-4y-4\lambda +4=0
x2+y22x(λ+1)4y(λ+1)+44λ(λ+1)=0{{x}^{2}}+{{y}^{2}}-\dfrac{2x}{\left( \lambda +1 \right)}-\dfrac{4y}{\left( \lambda +1 \right)}+\dfrac{4-4\lambda }{\left( \lambda +1 \right)}=0
Now compare this equation with the general equation of circle ax2+by2+2gx+2fy+c=0a{{x}^{2}}+b{{y}^{2}}+2gx+2fy+c=0
Coordinates of centre are given by (g,f)\left( g,f \right)
Therefore, coordinates of the circle will be (1λ+1,2λ+1)\left( \dfrac{1}{\lambda +1},\dfrac{2}{\lambda +1} \right)
Radius is obtained by (g)2+(f)2(c)\sqrt{{{\left( g \right)}^{2}}+{{\left( f \right)}^{2}}-\left( c \right)}
Now substitute the values and find radius.
(1λ+1)2+(2λ+1)2(4λ+4λ+1)\sqrt{{{\left( \dfrac{1}{\lambda +1} \right)}^{2}}+{{\left( \dfrac{2}{\lambda +1} \right)}^{2}}-\left( \dfrac{-4\lambda +4}{\lambda +1} \right)}
(1+4(4λ+4)(λ+1)(λ+1)2)\sqrt{\left( \dfrac{1+4-\left( -4\lambda +4 \right)\left( \lambda +1 \right)}{{{\left( \lambda +1 \right)}^{2}}} \right)}
(5(4+4λ4λ4λ2)(λ+1)2)\sqrt{\left( \dfrac{5-\left( 4+4\lambda -4\lambda -4{{\lambda }^{2}} \right)}{{{\left( \lambda +1 \right)}^{2}}} \right)}
(54+4λ2(λ+1)2)\sqrt{\left( \dfrac{5-4+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)}
(1+4λ2(λ+1)2)\sqrt{\left( \dfrac{1+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)}
As, our circle is touching x+2y=0x+2y=0 i.e. this line is a tangent to the circle.
We know that the tangent is perpendicular to the radius.
And the perpendicular distance is given by
Radius = g+2fa2+b2\left| \dfrac{g+2f}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right| where a and b are the coordinates of the perpendicular.
Now substitute the values,
(1+4λ2(λ+1)2)=(1λ+1)+(4λ+1)(1)2+(2)2\sqrt{\left( \dfrac{1+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)}=\left| \dfrac{\left( \dfrac{1}{\lambda +1} \right)+\left( \dfrac{4}{\lambda +1} \right)}{\sqrt{{{\left( 1 \right)}^{2}}+{{\left( 2 \right)}^{2}}}} \right|
Squaring both the sides to remove root as well as modulus.
(1+4λ2(λ+1)2)=(5λ+1)(1)2+(2)2 (1+4λ2(λ+1)2)=25(λ+1)2×5 1+4λ2=5 4λ2=4 λ=±1 \begin{aligned} & \sqrt{\left( \dfrac{1+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)}=\left| \dfrac{\left( \dfrac{5}{\lambda +1} \right)}{\sqrt{{{\left( 1 \right)}^{2}}+{{\left( 2 \right)}^{2}}}} \right| \\\ & \left( \dfrac{1+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)=\dfrac{25}{{{\left( \lambda +1 \right)}^{2}}\times 5} \\\ & 1+4{{\lambda }^{2}}=5 \\\ & 4{{\lambda }^{2}}=4 \\\ & \lambda =\pm 1 \\\ \end{aligned}
But λ\lambda cannot be zero.
Hence, the value of λ\lambda will be 1.
Therefore, the co-ordinates will be (12,22)\left( \dfrac{1}{2},\dfrac{2}{2} \right)
Substitute these values in this(λ+1)x2+(λ+1)y22x4y+44λ=0\left( \lambda +1 \right){{x}^{2}}+\left( \lambda +1 \right){{y}^{2}}-2x-4y+4-4\lambda =0 equation.
Hence, the equation of our required circle will be,
(1+1)x2+(1+1)y22x4y+44(1)=0 2x2+2y22x4y+44=0 x2+y2x2y=0 \begin{aligned} & \left( 1+1 \right){{x}^{2}}+\left( 1+1 \right){{y}^{2}}-2x-4y+4-4\left( 1 \right)=0 \\\ & 2{{x}^{2}}+2{{y}^{2}}-2x-4y+4-4=0 \\\ & {{x}^{2}}+{{y}^{2}}-x-2y=0 \\\ \end{aligned}

Hence, equation of circle is x2+y2x2y=0{{x}^{2}}+{{y}^{2}}-x-2y=0.

Note: Remember that the value of is to be taken positive. The formula of radius is (g)2+(f)2(c)\sqrt{{{\left( g \right)}^{2}}+{{\left( f \right)}^{2}}-\left( c \right)} g, f being the centre of circle and c being the constant in the equation. In the formula of the perpendicular distance applying mod is necessary.