Question
Mathematics Question on Applications of Derivatives
Find the equation of all lines having slope −1 that are tangents to the curve y=x−11 , x≠1.
Answer
The equation of the given curve is y=x−11 , x≠1. The slope of the tangents to the given curve at any point (x, y) is given by,
dxdy=-−(x−1)21
If the slope of the tangent is −1, then we have:
−(x−1)21 =-1
=(x-1)2=1
=x-1=±1
x=2, 0
When x = 0, y = −1 and when x = 2, y = 1.
Thus, there are two tangents to the given curve having slope −1. These are passing through the points (0, −1) and (2, 1).
∴The equation of the tangent through (0, −1) is given by,
y-(-1)=-1(x-0)
y+1=-x
y+x+1=0
∴The equation of the tangent through (2, 1) is given by
y − 1 = −1 (x − 2)
⇒ y − 1 = − x + 2
⇒ y + x − 3 = 0
Hence, the equations of the required lines are y + x + 1 = 0 and y + x − 3 = 0.