Solveeit Logo

Question

Mathematics Question on Differential equations

Find the equation of a curve passing through the point (0,0)(0,0) and whose differential equations is y=exsinx.y'=e^x sinx.

Answer

The differential equation of the curve is:
y=exsinx.y'=e^x sinx.
dydx=exsinx⇒\frac{dy}{dx}=e^x sinx
dy=exsinxdx⇒dy=e^x sinx\,dx
Integrating both sides,we get:
dy=exsinxdx...(1)∫dy=∫e^x sinx\, dx...(1)
Let I=exsinxdx.I=∫e^x sinx\, dx.
I=sinxexdx(ddx(sinx).exdx)dxI=sinx ∫e^x dx-∫(\frac{d}{dx}(sinx).∫e^x dx)dx
I=sinx.excosx.exdx⇒I=sinx.e^x-∫cosx.e^x dx
I=sinx.ex[cosx.exdx(ddx(cosx).exdx)dx]⇒I=sinx.e^x-[cosx.∫e^x dx-∫(\frac{d}{dx}(cosx).∫e^x dx)dx]
I=sinx.ex[cosx.ex(sinx).exdx]⇒I=sinx.e^x-[cosx.e^x-∫(-sinx).e^x dx]
I=exsinxexcosxI⇒I=e^x sinx-e^x cosx-I
2I=ex(sinxcosx)⇒2I=e^x(sinx-cosx)
I=ex(sinxcosx)2⇒I=\frac{e^x(sinx-cosx)}{2}
Substituting this value in equation(1),we get:
y=ex(sinxcosx)2+C...(2)y=\frac{e^x(sinx-cosx)}{2}+C...(2)
Now,the curve passes through point(0,0).
0=e0(sin0cos0)2+C∴0=\frac{e^0(sin0-cos0)}{2}+C
0=1(01)2+C⇒0=\frac{1(0-1)}{2}+C
C=12⇒C=\frac{1}{2}
Substituting C=12C=\frac{1}{2} in equation(2),we get:
y=ex(sinxcosx)2+12y=\frac{e^x(sinx-cosx)}{2}+\frac{1}{2}
2y=ex(sinxcosx)+1⇒2y=e^x(sinx-cosx)+1
2y1=ex(sinxcosx)⇒2y-1=e^x(sinx-cosx)
Hence,the required equation of the curve is 2y1=ex(sinxcosx).2y-1=e^x(sinx-cosx).