Question
Mathematics Question on Differential equations
Find the equation of a curve passing through the point (0,0) and whose differential equations is y′=exsinx.
The differential equation of the curve is:
y′=exsinx.
⇒dxdy=exsinx
⇒dy=exsinxdx
Integrating both sides,we get:
∫dy=∫exsinxdx...(1)
Let I=∫exsinxdx.
⇒I=sinx∫exdx−∫(dxd(sinx).∫exdx)dx
⇒I=sinx.ex−∫cosx.exdx
⇒I=sinx.ex−[cosx.∫exdx−∫(dxd(cosx).∫exdx)dx]
⇒I=sinx.ex−[cosx.ex−∫(−sinx).exdx]
⇒I=exsinx−excosx−I
⇒2I=ex(sinx−cosx)
⇒I=2ex(sinx−cosx)
Substituting this value in equation(1),we get:
y=2ex(sinx−cosx)+C...(2)
Now,the curve passes through point(0,0).
∴0=2e0(sin0−cos0)+C
⇒0=21(0−1)+C
⇒C=21
Substituting C=21 in equation(2),we get:
y=2ex(sinx−cosx)+21
⇒2y=ex(sinx−cosx)+1
⇒2y−1=ex(sinx−cosx)
Hence,the required equation of the curve is 2y−1=ex(sinx−cosx).