Solveeit Logo

Question

Question: Find the effective value or rms value (in ampere) of an alternating current in one time period that ...

Find the effective value or rms value (in ampere) of an alternating current in one time period that changes according to the given law: (All quantities are in S.I. unit and symbols have their usual meaning)
I=10I = 10, when 0<t<T80 < t < \dfrac{T}{8}; I=0I = 0, when T8<t<T2\dfrac{T}{8} < t < \dfrac{T}{2}
I=10I = - 10, when T2<t<58T\dfrac{T}{2} < t < \dfrac{5}{8}T
I=0I = 0, when 58T<t<T\dfrac{5}{8}T < t < T
I=10I = 10, when T<t<98TT < t < \dfrac{9}{8}T

Explanation

Solution

Hint
The effective value or the rms value of the current in the full time period can be found by integrating the current in the time period 0<t<T0 < t < T. So we can find the rms value by integrating the current over the small limits in time period.
In this solution we will be using the following formula,
Irms2=0TI2dt0Tdt\Rightarrow I_{rms}^2 = \dfrac{{\int_0^T {{I^2}dt} }}{{\int_0^T {dt} }}
where Irms{I_{rms}} is the rms value of current
II is the alternating current
tt is the time in the limit 0<t<T0 < t < T

Complete step by step answer
To find the effective value or the rms value of current we need to integrate the current in the whole limit of 0<t<T0 < t < T. This is given by the formula,
Irms2=0TI2dt0Tdt\Rightarrow I_{rms}^2 = \dfrac{{\int_0^T {{I^2}dt} }}{{\int_0^T {dt} }}
So in this formula, we can break the limit of the numerator into the smaller parts as given in the question. And for the denominator, the integration will occur under the limit 0<t<T0 < t < T.
Therefore, we can write
Irms2=0T/T88I2dt+T/T88T/T22I2dt+T/T225T/5T88I2dt+5T/5T88TI2dt0Tdt\Rightarrow I_{rms}^2 = \dfrac{{\int_0^{{T \mathord{\left/ {\vphantom {T 8}} \right. } 8}} {{I^2}dt} + \int_{{T \mathord{\left/ {\vphantom {T 8}} \right. } 8}}^{{T \mathord{\left/ {\vphantom {T 2}} \right. } 2}} {{I^2}dt} + \int_{{T \mathord{\left/ {\vphantom {T 2}} \right. } 2}}^{{{5T} \mathord{\left/ {\vphantom {{5T} 8}} \right. } 8}} {{I^2}dt} + \int_{{{5T} \mathord{\left/ {\vphantom {{5T} 8}} \right. } 8}}^T {{I^2}dt} }}{{\int_0^T {dt} }}
In the denominator the value is, 0Tdt=t0T\int_0^T {dt} = \left. t \right|_0^T
Therefore it gives the value in the denominator as, [T0]=T\left[ {T - 0} \right] = T
So we get,
Irms2=1T[0T/T88I2dt+T/T88T/T22I2dt+T/T225T/5T88I2dt+5T/5T88TI2dt]\Rightarrow I_{rms}^2 = \dfrac{1}{T}\left[ {\int_0^{{T \mathord{\left/ {\vphantom {T 8}} \right. } 8}} {{I^2}dt} + \int_{{T \mathord{\left/ {\vphantom {T 8}} \right. } 8}}^{{T \mathord{\left/ {\vphantom {T 2}} \right. } 2}} {{I^2}dt} + \int_{{T \mathord{\left/ {\vphantom {T 2}} \right. } 2}}^{{{5T} \mathord{\left/ {\vphantom {{5T} 8}} \right. } 8}} {{I^2}dt} + \int_{{{5T} \mathord{\left/ {\vphantom {{5T} 8}} \right. } 8}}^T {{I^2}dt} } \right]
Now for the numerator, we substitute the values of the current as given in the question. That is,
I=10\Rightarrow I = 10, when 0<t<T80 < t < \dfrac{T}{8};
I=0\Rightarrow I = 0, when T8<t<T2\dfrac{T}{8} < t < \dfrac{T}{2}
I=10\Rightarrow I = - 10, when T2<t<58T\dfrac{T}{2} < t < \dfrac{5}{8}T
I=0\Rightarrow I = 0, when 58T<t<T\dfrac{5}{8}T < t < T
So we get,
Irms2=1T[0T/T88(10)2dt+T/T88T/T22(0)2dt+T/T225T/5T88(10)2dt+5T/5T88T(0)2dt]\Rightarrow I_{rms}^2 = \dfrac{1}{T}\left[ {\int_0^{{T \mathord{\left/ {\vphantom {T 8}} \right. } 8}} {{{\left( {10} \right)}^2}dt} + \int_{{T \mathord{\left/ {\vphantom {T 8}} \right. } 8}}^{{T \mathord{\left/ {\vphantom {T 2}} \right. } 2}} {{{\left( 0 \right)}^2}dt} + \int_{{T \mathord{\left/ {\vphantom {T 2}} \right. } 2}}^{{{5T} \mathord{\left/ {\vphantom {{5T} 8}} \right. } 8}} {{{\left( { - 10} \right)}^2}dt} + \int_{{{5T} \mathord{\left/ {\vphantom {{5T} 8}} \right. } 8}}^T {{{\left( 0 \right)}^2}dt} } \right]
The values of the current are constants and come out of the integration, and the time is integrated over the limits.
Irms2=1T[100t0T/T88+0+100tT/T225T/5T88+0]I_{rms}^2 = \dfrac{1}{T}\left[ {100\left. t \right|_0^{{T \mathord{\left/ {\vphantom {T 8}} \right. } 8}} + 0 + 100\left. t \right|_{{T \mathord{\left/ {\vphantom {T 2}} \right. } 2}}^{{{5T} \mathord{\left/ {\vphantom {{5T} 8}} \right. } 8}} + 0} \right]
On substituting the limits we get
Irms2=1T[100(T80)+100(5T8T2)]\Rightarrow I_{rms}^2 = \dfrac{1}{T}\left[ {100\left( {\dfrac{T}{8} - 0} \right) + 100\left( {\dfrac{{5T}}{8} - \dfrac{T}{2}} \right)} \right]
The subtraction in fraction gives us, 5T8T2=5T4T8\dfrac{{5T}}{8} - \dfrac{T}{2} = \dfrac{{5T - 4T}}{8}
So it is equal to 5T4T8=T8\dfrac{{5T - 4T}}{8} = \dfrac{T}{8}
Substituting we get
Irms2=1T[100×T8+100×T8]\Rightarrow I_{rms}^2 = \dfrac{1}{T}\left[ {100 \times \dfrac{T}{8} + 100 \times \dfrac{T}{8}} \right]
We can take the TT common and cancel it with the 1T\dfrac{1}{T} outside. So we get
Irms2=[1008+1008]\Rightarrow I_{rms}^2 = \left[ {\dfrac{{100}}{8} + \dfrac{{100}}{8}} \right]
This gives us, Irms2=2008=25I_{rms}^2 = \dfrac{{200}}{8} = 25
So to get the rms current we take square root on both the sides and get
Irms=25=5A\Rightarrow {I_{rms}} = \sqrt {25} = 5A
Hence the rms value of current is equal to 5A5A.

Note
The rms value is the root mean square value of the sinusoidally varying values of current and voltages. The rms value of current and voltages can also be found by dividing the peak to peak value by an amount of 2\sqrt 2 .