Solveeit Logo

Question

Question: Find the domain of the function \(y=\sqrt{16x-{{x}^{5}}}+{{\log }_{\dfrac{1}{2}}}\left( {{x}^{2}}-1 ...

Find the domain of the function y=16xx5+log12(x21)y=\sqrt{16x-{{x}^{5}}}+{{\log }_{\dfrac{1}{2}}}\left( {{x}^{2}}-1 \right).

Explanation

Solution

First we will consider the given equation as two parts one is 16xx5\sqrt{16x-{{x}^{5}}} and the second one is log12(x21){{\log }_{\dfrac{1}{2}}}\left( {{x}^{2}}-1 \right). To find the domain of the given function we need to calculate the interval where the two parts of the given function are defined. We know that the function which is square root is defined when that function is given values greater than or equal zero. From this we will calculate the interval where the part 16xx5\sqrt{16x-{{x}^{5}}} is defined. We also know that the logarithmic function is defined when the function value is greater than zero. From this we will calculate the interval where the part log12(x21){{\log }_{\dfrac{1}{2}}}\left( {{x}^{2}}-1 \right) is defined. From the obtained two intervals we will calculate the domain of the given function.

Complete step by step answer:
Given that, y=16xx5+log12(x21)y=\sqrt{16x-{{x}^{5}}}+{{\log }_{\dfrac{1}{2}}}\left( {{x}^{2}}-1 \right)
Consider the part 16xx5\sqrt{16x-{{x}^{5}}}. Now the function 16xx5\sqrt{16x-{{x}^{5}}} is defined when
16xx50 x(16x4)0 16x40 x416 x4(±2)4 x±2 \begin{aligned} & 16x-{{x}^{5}}\ge 0 \\\ & \Rightarrow x\left( 16-{{x}^{4}} \right)\ge 0 \\\ & \Rightarrow 16-{{x}^{4}}\ge 0 \\\ & \Rightarrow {{x}^{4}}\le 16 \\\ & \Rightarrow {{x}^{4}}\le {{\left( \pm 2 \right)}^{4}} \\\ & \Rightarrow x\le \pm 2 \\\ \end{aligned}
From this the interval where the function 16xx5\sqrt{16x-{{x}^{5}}} is defined is given by x[,2][0,2]...(i)x\in \left[ -\infty ,-2 \right]\cup \left[ 0,2 \right]...\left( \text{i} \right)
Now consider the part log12(x21){{\log }_{\dfrac{1}{2}}}\left( {{x}^{2}}-1 \right). The function log12(x21){{\log }_{\dfrac{1}{2}}}\left( {{x}^{2}}-1 \right) is defined when
x21>0 x212>0 (x+1)(x1)>0 x+1>0 and x1>0 x>1 and x>1 \begin{aligned} & {{x}^{2}}-1>0 \\\ & \Rightarrow {{x}^{2}}-{{1}^{2}}>0 \\\ & \Rightarrow \left( x+1 \right)\left( x-1 \right)>0 \\\ & \Rightarrow x+1>0\text{ and }x-1>0 \\\ & \Rightarrow x>-1\text{ and }x>1 \\\ \end{aligned}
From this we can write that the function log12(x21){{\log }_{\dfrac{1}{2}}}\left( {{x}^{2}}-1 \right) is defined when x(,1)(1,)...(ii)x\in \left( -\infty ,-1 \right)\cup \left( 1,\infty \right)...\left( \text{ii} \right)
If y=16xx5+log12(x21)y=\sqrt{16x-{{x}^{5}}}+{{\log }_{\dfrac{1}{2}}}\left( {{x}^{2}}-1 \right), from equations (i)\left( \text{i} \right) and (ii)\left( \text{ii} \right) the domain of yy is given by [,2][1,2]\left[ -\infty ,-2 \right]\cup \left[ 1,2 \right].

Note: While finding the domains and ranges we need to be very careful even the brackets also change our answer. The domain and the ranges are completely depending on the type of the functions we have like functions having square roots have a different domain and the function having the logarithmic has a different domain.