Solveeit Logo

Question

Question: Find the domain of definition of \(f(x) = \frac{\log_{2}(x + 3)}{x^{2} + 3x + 2}\)...

Find the domain of definition of f(x)=log2(x+3)x2+3x+2f(x) = \frac{\log_{2}(x + 3)}{x^{2} + 3x + 2}

A

(3,)( - 3,\infty)

B

{1,2}\{ - 1, - 2\}

C

(3,){1,2}( - 3,\infty) - \{ - 1, - 2\}

D

(,)( - \infty,\infty)

Answer

(3,){1,2}( - 3,\infty) - \{ - 1, - 2\}

Explanation

Solution

Here f(x)=log2(x+3)x2+3x+2=log2(x+3)(x+1)(x+2)f(x) = \frac{\log_{2}(x + 3)}{x^{2} + 3x + 2} = \frac{\log_{2}(x + 3)}{(x + 1)(x + 2)} exists if,

Numerator x+3>0x>3x + 3 > 0 \Rightarrow x > - 3 …... (i)

and denominator (x+1)(x+2)(x + 1)(x + 2) ≠ 0 x1,2\Rightarrow x \neq - 1, - 2 …… (ii)

Thus, from (i) and (ii); we have domain of f(x)f(x) is

(3,){1,2}( - 3,\infty) - \{ - 1, - 2\}.