Solveeit Logo

Question

Question: Find the domain and range of \[f\left( x \right) = {\sin ^{ - 1}}\left( {\log \left[ x \right]} \rig...

Find the domain and range of f(x)=sin1(log[x])+log(sin1[x])f\left( x \right) = {\sin ^{ - 1}}\left( {\log \left[ x \right]} \right) + \log \left( {{{\sin }^{ - 1}}\left[ x \right]} \right) where[.]\left[ . \right] denotes greater integer function.

Explanation

Solution

Hint- To find the domain, first find the intersection of the values for which the given function will exist .Choose the positive value as x here is the greater integer function.

Complete step-by-step answer:
Given f(x)=sin1(log[x])+log(sin1[x])f\left( x \right) = {\sin ^{ - 1}}\left( {\log \left[ x \right]} \right) + \log \left( {{{\sin }^{ - 1}}\left[ x \right]} \right)
Here,since sin1(log[x]){\sin ^{ - 1}}\left( {\log \left[ x \right]} \right) is defined if and only if [x]\left[ x \right] >0 and 1 - 1log[x]1\log \left[ x \right] \leqslant 1 x[1,1) \Rightarrow x \in \left[ {1,1} \right)-- (i) {on solving the inequality }
And log(sin1[x])\log \left( {{{\sin }^{ - 1}}\left[ x \right]} \right) is defined if and only if 1[x]1 - 1 \leqslant \left[ x \right] \leqslant 1 andsin1[x]>0{\sin ^{ - 1}}\left[ x \right] > 0 [x]=1 \Rightarrow \left[ x \right] = 1----(ii)
Now,(i)∩(ii) →x[1,2)x \in \left[ {1,2} \right) .This is the domain of the function.Now f(x) is defined only if [x]=1 only.Then range =sin1(log[1])+log(sin1[1]){\sin ^{ - 1}}\left( {\log \left[ 1 \right]} \right) + \log \left( {{{\sin }^{ - 1}}\left[ 1 \right]} \right)=sin10+logπ2{\sin ^{ - 1}}0 + \log \dfrac{\pi }{2} =logπ2 = \log \dfrac{\pi }{2}
So the domain is [1,2)\left[ {1,2} \right) and range is logπ2\log \dfrac{\pi }{2} .

Note: Here, the students may mistake the domain as (1,2)\left( {1,2} \right) or [1,2]\left[ {1,2} \right] but this is wrong as it changes the meaning here the domain starts with closed interval denoted by[ and end with open interval denoted by ).