Solveeit Logo

Question

Question: Find the distance of the point (1,1) from the line \( 12\left( x+6 \right)=5\left( y-2 \right) \) ....

Find the distance of the point (1,1) from the line 12(x+6)=5(y2)12\left( x+6 \right)=5\left( y-2 \right) .

Explanation

Solution

Hint : In order to solve this problem we first need to convert the equation in to Ax+By+C=0Ax+By+C=0 .
Then the formula for perpendicular distance (d) of a line Ax+By+C=0Ax+By+C=0 from a point O(x1,y1)O\left( {{x}_{1}},{{y}_{1}} \right) is given by, d=Ax1+By1+CA2+B2d=\dfrac{\left| A{{x}_{1}}+B{{y}_{1}}+C \right|}{\sqrt{{{A}^{2}}+{{B}^{2}}}} . the distance is irrespective of the sign of the final answer.

Complete step-by-step answer :
We have given the equation of the line and we need to find the distance from that line to another point.
Let the point be (1,1) be O(x1,y1)O\left( {{x}_{1}},{{y}_{1}} \right) .
The line of the equation given is 12(x+6)=5(y2)12\left( x+6 \right)=5\left( y-2 \right) .
We need to solve this equation and write it in the form of Ax+By+C=0Ax+By+C=0 .
Solving the equation, we get,
12(x+6)=5(y2) 12x+(12×6)5y+(5×2)=0 12x+725y+10=0 12x5y+82=0..............................(i) \begin{aligned} & 12\left( x+6 \right)=5\left( y-2 \right) \\\ & 12x+\left( 12\times 6 \right)-5y+\left( 5\times 2 \right)=0 \\\ & 12x+72-5y+10=0 \\\ & 12x-5y+82=0..............................(i) \\\ \end{aligned}
Comparing the equation with Ax+By+C=0Ax+By+C=0 , we get,
A=12,B=5,C=82A=12,B=-5,C=82 .
The formula for perpendicular distance (d) of a line Ax+By+C=0Ax+By+C=0 from a point O(x1,y1)O\left( {{x}_{1}},{{y}_{1}} \right) is given by,
d=Ax1+By1+CA2+B2..........(ii)d=\dfrac{\left| A{{x}_{1}}+B{{y}_{1}}+C \right|}{\sqrt{{{A}^{2}}+{{B}^{2}}}}..........(ii)
Therefore, the distance of the point (1,1) is as follows,
d=(12×1)+(5×1)+82(12)2+(5)2d=\dfrac{\left| \left( 12\times 1 \right)+\left( -5\times 1 \right)+82 \right|}{\sqrt{{{\left( 12 \right)}^{2}}+{{\left( -5 \right)}^{2}}}}
Solving this we get,
d=125+82144+25 =8913\begin{aligned} & d=\dfrac{\left| 12-5+82 \right|}{\sqrt{144+25}} \\\ & =\dfrac{89}{13} \end{aligned}
Hence, the perpendicular distance (d) from the point (1,1) from the line 12(x+6)=5(y2)12\left( x+6 \right)=5\left( y-2 \right) is 8913\dfrac{89}{13} units.

Note : We can see that in the numerator there is a modulus sign in order to always consider the positive sign. We need to find the distance therefore; distance is always positive. Also, we are assuming that the distance we are finding is the shortest distance which is the perpendicular distance from the point to the line.