Solveeit Logo

Question

Mathematics Question on Straight lines

Find the distance of the line 4x+7y+5=04x + 7y + 5 = 0 from the point (1, 2) along the line 2xy=02x - y = 0

Answer

The given lines are
2x\-y=0(1)2x \- y = 0 … (1)
4x+7y+5=0(2)4x + 7y + 5 = 0 … (2)
A (1, 2) is a point on line (1).
Let B be the point of intersection of lines (1) and (2).

equation of line  4x + 7y + 5 = 0

On solving equations (1) and (2), we obtain
x=518x =\frac{ -5}{18} and y=59y = – \frac{5}{9}

∴Coordinates of point B are (518,59).\left(\frac{-5}{18}, \frac{-5}{9}\right).

By using distance formula, the distance between points A and B can be obtained as
AB=(1+518)2+(2+59)2AB=\sqrt{\left(1+\frac{5}{18}\right)^2+\left(2+\frac{5}{9}\right)^2} units.

=(2318)2+(239)2=\sqrt{\left(\frac{23}{18}\right)^2+\left(\frac{23}{9}\right)^2} uniits

=(232×9)2+(239)2= \sqrt{\left(\frac{23}{2\times9}\right)^2+\left(\frac{23}{9}\right)^2} units

=(239)2(12)2+(239)2= \sqrt{\left(\frac{23}{9}\right)^2\left(\frac{1}{2}\right)^2+\left(\frac{23}{9}\right)^2} units

=(239)2+(14+1)= \sqrt{\left(\frac{23}{9}\right)^2+\left(\frac{1}{4}+1\right)} units

=23954= \frac{23}{9}\sqrt{\frac{5}{4}} units

=239×52= \frac{23}{9} \times\frac{\sqrt5}{2} units

=23518=\frac{23\sqrt{5}}{18} units

Thus, the required distance is 23518\frac{23\sqrt{5}}{18} units.