Solveeit Logo

Question

Question: Find the distance between the lines \[{l_1}\] and \[{l_2}\] given by \[\overrightarrow r = \wideha...

Find the distance between the lines l1{l_1} and l2{l_2} given by
r=i^+2j^4k^+λ(2i^+3j^+6k^)\overrightarrow r = \widehat i + 2\widehat j - 4\widehat k + \lambda \left( {2\widehat i + 3\widehat j + 6\widehat k} \right) and r=3i^+3j^5k^+μ(2i^+3j^+6k^)\overrightarrow r = 3\widehat i + 3\widehat j - 5\widehat k + \mu \left( {2\widehat i + 3\widehat j + 6\widehat k} \right)

Explanation

Solution

Here, we will compare the equations of the given lines with the general vector equation of a line. We will then substitute the values in the vector formula of shortest distance between two lines to find the required distance.

Formula Used:
Shortest distance between two lines =b×(a2a1)b = \left| {\dfrac{{\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)}}{{\overrightarrow b }}} \right|

Complete step by step solution:
Given equations of the lines are: r=i^+2j^4k^+λ(2i^+3j^+6k^)\overrightarrow r = \widehat i + 2\widehat j - 4\widehat k + \lambda \left( {2\widehat i + 3\widehat j + 6\widehat k} \right) and r=3i^+3j^5k^+μ(2i^+3j^+6k^)\overrightarrow r = 3\widehat i + 3\widehat j - 5\widehat k + \mu \left( {2\widehat i + 3\widehat j + 6\widehat k} \right).
Comparing these with the general vector equation of a line r=a1+λb\overrightarrow r = \overrightarrow {{a_1}} + \lambda \overrightarrow b and r=a2+μb\overrightarrow r = \overrightarrow {{a_2}} + \mu \overrightarrow b , we get the position vectors of the lines as:
a1=i^+2j^4k^\overrightarrow {{a_1}} = \widehat i + 2\widehat j - 4\widehat k
a2=3i^+3j^5k^\overrightarrow {{a_2}} = 3\widehat i + 3\widehat j - 5\widehat k
Also, in these lines,
b=2i^+3j^+6k^\overrightarrow b = 2\widehat i + 3\widehat j + 6\widehat k
Hence, in order to find the distance between the given lines, we use the formula b×(a2a1)b\left| {\dfrac{{\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)}}{{\overrightarrow b }}} \right|.
So, first we will calculate different terms of the formula.
Now,
(a2a1)=3i^+3j^5k^i^2j^+4k^\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right) = 3\widehat i + 3\widehat j - 5\widehat k - \widehat i - 2\widehat j + 4\widehat k
Adding and subtracting the like terms, we get
(a2a1)=2i^+j^k^\Rightarrow \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right) = 2\widehat i + \widehat j - \widehat k
Now, we will find (a2a1)×b\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right) \times \overrightarrow b . So,
(a2a1)×b=(2i^+j^k^)×(2i^+3j^+6k^)\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right) \times \overrightarrow b = \left( {2\widehat i + \widehat j - \widehat k} \right) \times \left( {2\widehat i + 3\widehat j + 6\widehat k} \right)
We will find the cross product of the above vector using determinant. Therefore,
\Rightarrow \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right) \times \overrightarrow b = \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\\2&1&{ - 1}\\\2&3&6\end{array}} \right|
Solving this further, we get,
(a2a1)×b=i^(6+3)j^(12+2)+k^(62)\Rightarrow \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right) \times \overrightarrow b = \widehat i\left( {6 + 3} \right) - \widehat j\left( {12 + 2} \right) + \widehat k\left( {6 - 2} \right)
Adding and subtracting the like terms, we get
(a2a1)×b=9i^14j^+4k^\Rightarrow \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right) \times \overrightarrow b = 9\widehat i - 14\widehat j + 4\widehat k
Taking modulus on both sides, we get
(a2a1)×b=9i^14j^+4k^\Rightarrow \left| {\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right) \times \overrightarrow b } \right| = \left| {9\widehat i - 14\widehat j + 4\widehat k} \right|
Simplifying further, we get
(a2a1)×b=(9)2+(14)2+(4)2\Rightarrow \left| {\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right) \times \overrightarrow b } \right| = \sqrt {{{\left( 9 \right)}^2} + {{\left( { - 14} \right)}^2} + {{\left( 4 \right)}^2}}
Applying the exponent on the terms and adding them, we get
(a2a1)×b=81+196+16=293\Rightarrow \left| {\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right) \times \overrightarrow b } \right| = \sqrt {81 + 196 + 16} = \sqrt {293}
Now we will find b\left| {\overrightarrow b } \right|.
b=(2)2+(3)2+(6)2\left| {\overrightarrow b } \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 6 \right)}^2}}
Applying the exponent on the terms, we get
b=4+9+36\Rightarrow \left| {\overrightarrow b } \right| = \sqrt {4 + 9 + 36}
Adding the terms, we get
b=49=7\Rightarrow \left| {\overrightarrow b } \right| = \sqrt {49} = 7
Now substituting the obtained values in the formula b×(a2a1)b\left| {\dfrac{{\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)}}{{\overrightarrow b }}} \right|, we get
The distance between the lines l1{l_1} and {l_2}$$$$ = \left| {\dfrac{{\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)}}{{\overrightarrow b }}} \right| = \dfrac{{\sqrt {293} }}{7} units

Therefore, the distance between the lines l1{l_1} and l2{l_2} is 2937\dfrac{{\sqrt {293} }}{7} units.

Note:
A scalar is a quantity that has a magnitude whereas; a vector is a mathematical quantity that has both magnitude and direction. A line of given length and pointing along a given direction, such as an arrow, is a typical representation of a vector. Now, position vector is also known as location vector, it is a straight line having one end fixed and the other end attached to a moving point, it is used to describe the position of a certain point, which turns out to be its respective coordinates.