Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find the direction cosines of the vector joining the points A(1,2,3)A(1,2,-3) and B(1,2,1)B(-1,-2,1) directed from AA to BB.

Answer

The correct answer is:(13,23,23).(\frac{-1}{3},\frac{-2}{3},\frac{2}{3}).
The given points are A(1,2,3)A(1,2,-3) and B(1,2,1).B(-1,-2,1).
AB=(11)i^+(22)j^+1(3)k^∴\vec{AB}=(-1-1)\hat{i}+(-2-2)\hat{j}+{1-(-3)}\hat{k}
AB=2i^4j^+4k^⇒\vec{AB}=-2\hat{i}-4\hat{j}+4\hat{k}
AB=(2)2+(4)2+42=4+16+16=36=6∴|\vec{AB}|=\sqrt{(-2)^2+(-4)^2+4^2}=\sqrt{4+16+16}=\sqrt{36}=6
Hence,the direction cosines of AB\vec{AB} are (26,46,46)=(13,23,23).(\frac{-2}{6},\frac{-4}{6},\frac{4}{6})=(\frac{-1}{3},\frac{-2}{3},\frac{2}{3}).