Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find the direction cosines of the vector i^+2j^+3k^.\hat{i}+2\hat{j}+3\hat{k}.

Answer

The correct answer is:(114,214,314).(\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}}).
Let a=i^+2j^+3k^.\vec{a}=\hat{i}+2\hat{j}+3\hat{k}..
a=12+22+32=1+4+9=14∴|\vec{a}|=\sqrt{1^2+2^2+3^2}=\sqrt{1+4+9}=\sqrt{14}
Hence,the direction cosines of a\vec{a} are (114,214,314).(\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}}).