Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the direction cosines of the sides of the triangle whose vertices are(3,5,-4),(-1,1,2), and(-5,-5,-2).

Answer

The vertices of △ABC are A(3,5,-4), B(-1,1,2), and C(-5,-5,-2).
The direction ratios of side AB are (-1-3), (91-5), and(2-(-4)) i.e., -4, -4, and 6.
Then,
(4)2+(4)2+(6)2\sqrt{(-4)^2+(-4)^2+(6)^2}
=16+16+36\sqrt{16+16+36}
=68\sqrt{68}
=2172\sqrt{17}

Therefore, the direction cosines of AB are
4(4)2-\frac{4}{(-4)^2}+(-4)2+(6)2, 4(4)2-\frac{4}{(-4)^2}+(-4)2+(6)2, 6(4)2-\frac{6}{(-4)^2}+(-4)2+(6)2
4217-\frac{4}{2\sqrt{17}}, 4217-\frac{4}{2\sqrt{17}}, 6217\frac{6}{2\sqrt{17}}
217-\frac{2}{\sqrt{17}}, 217-\frac{2}{\sqrt{17}}, 317\frac{3}{\sqrt{17}}

The direction ratios of BC are(-5-(-1)), (-5-1), and (-2-2) i.e.,-4, -6, and -4.

Therefore, the direction cosines of BC are 4(4)2-\frac{4}{(-4)^2}+(-6)2+(-4)2, 6(4)2-\frac{6}{(-4)^2}+(-6)2+(-4)2,4(4)2-\frac{4}{(-4)^2}+(-6)2+(-4)2 i.e., 4217-\frac{4}{2\sqrt{17}}, 6217-\frac{6}{2\sqrt{17}}, 4217-\frac{4}{2\sqrt{17}}
The direction ratios of CA are(-5-3) ,(-5-5), and (-2-(-4)) i.e., -8, -10, and 2.