Question
Mathematics Question on Differential equations
Find the differentiation of cot−14−3tanx3+4tanx
To find the derivative of cot−14−3tanx3+4tanx, we can use the chain rule and the derivative of the inverse cotangent function.
Let u = (4−3tanx)(3+4tanx)
Then, cot−14−3tanx3+4tanx=cot−1(u)
Differentiating both sides with respect to x, we get:
dxd[cot−1(u)]=dxd[cot−1(4−3tanx)(3+4tanx)]
Using the chain rule, we have:
dxd[cot−1(u)]=[1+u2]−1×dxdu
To find du/dx, we can use the quotient rule:
dxdu=(4−3tanx)2[(4−3tanx)(4sec2x)−(3+4tanx)(3sec2x)]
Simplifying this expression, we get:
dxdu=(4−3tanx)2−48sec2
Substituting this expression for dxdu into our earlier equation, we get:
dxd[cot−1(4−3tanx)(3+4tanx)]=[1+u2]−1×[(4−3tanx)2−48sec2x]
Simplifying this expression, we get:
dxd[cot−1(4−3tanx)(3+4tanx)]=[(3tanx−4)2+25]48sec2x
Therefore, the derivative of [cot−1(4−3tanx)(3+4tanx)] is [(3tanx−4)2+25]48sec2x.