Solveeit Logo

Question

Question: Find the differential equation of y = $e^{mx}$...

Find the differential equation of y = emxe^{mx}

A

dydxylogyx=0\frac{dy}{dx} - \frac{ylogy}{x} = 0

B

dydx=0\frac{dy}{dx} = 0

C

dydx+ylogyx=0\frac{dy}{dx} + \frac{ylogy}{x} = 0

D

dydxylogyxy=0\frac{dy}{dx} - \frac{ylogy}{xy} = 0

Answer

dydxylogyx=0\frac{dy}{dx} - \frac{ylogy}{x} = 0

Explanation

Solution

To find the differential equation for the given function y=emxy = e^{mx}, we need to eliminate the arbitrary constant 'm'.

  1. Given function: y=emx(1)y = e^{mx} \quad \cdots (1)

  2. Differentiate equation (1) with respect to x: dydx=ddx(emx)\frac{dy}{dx} = \frac{d}{dx}(e^{mx}) dydx=memx(2)\frac{dy}{dx} = m e^{mx} \quad \cdots (2)

  3. Substitute yy from equation (1) into equation (2): From (1), we know emx=ye^{mx} = y. So, dydx=my(3)\frac{dy}{dx} = my \quad \cdots (3)

  4. Eliminate 'm' using equation (1): Take the natural logarithm (ln) on both sides of equation (1): lny=ln(emx)\ln y = \ln (e^{mx}) lny=mx\ln y = mx Now, solve for 'm': m=lnyx(4)m = \frac{\ln y}{x} \quad \cdots (4)

  5. Substitute the expression for 'm' from equation (4) into equation (3): dydx=(lnyx)y\frac{dy}{dx} = \left(\frac{\ln y}{x}\right) y dydx=ylnyx\frac{dy}{dx} = \frac{y \ln y}{x}

  6. Rearrange the equation to match the given options: dydxylnyx=0\frac{dy}{dx} - \frac{y \ln y}{x} = 0

Assuming logy\log y in the options refers to lny\ln y (natural logarithm), this matches the first option.