Solveeit Logo

Question

Question: Find the differential coefficient of the given function \[{\log _e}\sqrt {\dfrac{{1 + \sin x}}{{1 - ...

Find the differential coefficient of the given function loge1+sinx1sinx{\log _e}\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} is

(1) cosecx (2) secx (3) tanx (4) cosx  \left( 1 \right){\text{ cosecx}} \\\ \left( 2 \right){\text{ secx}} \\\ \left( 3 \right){\text{ tanx}} \\\ \left( 4 \right){\text{ cosx}} \\\
Explanation

Solution

First of all we have to define the properties of the logarithmic function we are using to solve the given problem
logeab=bloga{\log _e}{a^b} = b\log a
log(ab)=logalogb\log \left( {\dfrac{a}{b}} \right) = \log a - \log b
After that use the rule of derivatives
Product Rule:- ddx(f(x)g(x))=df(x)dx.g(x)+f(x)dg(x)dx\dfrac{d}{{dx}}\left( {f\left( x \right)g\left( x \right)} \right) = \dfrac{{df\left( x \right)}}{{dx}}.g\left( x \right) + f\left( x \right)\dfrac{{dg\left( x \right)}}{{dx}}
Sum Rule:- d(f(x)+g(x))=d(f(x))+d(g(x))d\left( {f\left( x \right) + g\left( x \right)} \right) = d\left( {f\left( x \right)} \right) + d\left( {g\left( x \right)} \right)
Constant Rule:- ddx(cf(x))=cddxf(x)\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}f\left( x \right)
And lastly use the derivatives of the standard functions

d(sinx)=cosx d(logx)=1x  d\left( {\sin x} \right) = \cos x \\\ d\left( {\log x} \right) = \dfrac{1}{x} \\\

Complete step by step answer:
The function is given as loge1+sinx1sinx{\log _e}\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}}
Let the function be equal to yy then
y=loge1+sinx1sinxy = {\log _e}\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}}
It can also be written as
y=loge(1+sinx1sinx)12y = {\log _e}{\left( {\dfrac{{1 + \sin x}}{{1 - \sin x}}} \right)^{\dfrac{1}{2}}}
Using the property of logarithmic function that is logeab=bloga{\log _e}{a^b} = b\log a
Here a=1+sinx1sinxa = \dfrac{{1 + \sin x}}{{1 - \sin x}} and b=12b = \dfrac{1}{2}
y=12loge(1+sinx1sinx)y = \dfrac{1}{2}{\log _e}\left( {\dfrac{{1 + \sin x}}{{1 - \sin x}}} \right)
Again, using another property of logarithmic function that is log(ab)=logalogb\log \left( {\dfrac{a}{b}} \right) = \log a - \log b
Here a=1+sinxa = 1 + \sin x and b=1sinxb = 1 - \sin x
y=12(log(1+sinx)log(1sinx))y = \dfrac{1}{2}\left( {\log \left( {1 + \sin x} \right) - \log \left( {1 - \sin x} \right)} \right)
Now, on differentiating with respect to xxwe get
dydx=ddx(12(log(1+sinx)log(1sinx)))\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{1}{2}\left( {\log \left( {1 + \sin x} \right) - \log \left( {1 - \sin x} \right)} \right)} \right)
Using the derivative rule
ddx(f(x)g(x))=ddxf(x)ddxg(x)\dfrac{d}{{dx}}\left( {f\left( x \right) - g\left( x \right)} \right) = \dfrac{d}{{dx}}f\left( x \right) - \dfrac{d}{{dx}}g\left( x \right)and
ddx(cf(x))=cddxf(x)\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}f\left( x \right) we get

dydx=12ddx(log(1+sinx)log(1sinx)) dydx=12(ddxlog(1+sinx)ddxlog(1sinx))  \dfrac{{dy}}{{dx}} = \dfrac{1}{2}\dfrac{d}{{dx}}\left( {\log \left( {1 + \sin x} \right) - \log \left( {1 - \sin x} \right)} \right) \\\ \dfrac{{dy}}{{dx}} = \dfrac{1}{2}\left( {\dfrac{d}{{dx}}\log \left( {1 + \sin x} \right) - \dfrac{d}{{dx}}\log \left( {1 - \sin x} \right)} \right) \\\

Using the derivative of a standard function that is

d(sinx)=cosx d(logx)=1x  d\left( {\sin x} \right) = \cos x \\\ d\left( {\log x} \right) = \dfrac{1}{x} \\\

We get

dydx=12(11+sinx×ddx(1+sinx)11sinx×ddx(1sinx)) dydx=12(11+sinx(0+cosx)11sinx(0cosx))  \dfrac{{dy}}{{dx}} = \dfrac{1}{2}\left( {\dfrac{1}{{1 + \sin x}} \times \dfrac{d}{{dx}}\left( {1 + \sin x} \right) - \dfrac{1}{{1 - \sin x}} \times \dfrac{d}{{dx}}\left( {1 - \sin x} \right)} \right) \\\ \dfrac{{dy}}{{dx}} = \dfrac{1}{2}\left( {\dfrac{1}{{1 + \sin x}}\left( {0 + \cos x} \right) - \dfrac{1}{{1 - \sin x}}\left( {0 - \cos x} \right)} \right) \\\

On simplifying we get

dydx=12(cosx1+sinx+cosx1sinx)   \dfrac{{dy}}{{dx}} = \dfrac{1}{2}\left( {\dfrac{{\cos x}}{{1 + \sin x}} + \dfrac{{\cos x}}{{1 - \sin x}}} \right) \\\ \\\

Taking L.C.M on the right-hand side of the equation

dydx=12(cosx(1sinx)+cosx(1+sinx)(1+sinx)(1sinx))   \dfrac{{dy}}{{dx}} = \dfrac{1}{2}\left( {\dfrac{{\cos x\left( {1 - \sin x} \right) + \cos x\left( {1 + \sin x} \right)}}{{\left( {1 + \sin x} \right)\left( {1 - \sin x} \right)}}} \right) \\\ \\\

Taking common cosx\cos x from the right-hand side of the equation
dydx=12(cosx)(1sinx+1+sinx1sin2x)\dfrac{{dy}}{{dx}} = \dfrac{1}{2}\left( {\cos x} \right)\left( {\dfrac{{1 - \sin x + 1 + \sin x}}{{1 - {{\sin }^2}x}}} \right)
dydx=12(cosx)(21sin2x)\dfrac{{dy}}{{dx}} = \dfrac{1}{2}\left( {\cos x} \right)\left( {\dfrac{2}{{1 - {{\sin }^2}x}}} \right)
Using trigonometric identity 1sin2x=cos2x1 - {\sin ^2}x = {\cos ^2}x
dydx=12(cosx)(2cos2x)\dfrac{{dy}}{{dx}} = \dfrac{1}{2}\left( {\cos x} \right)\left( {\dfrac{2}{{{{\cos }^2}x}}} \right)
On simplifying we get

dydx=cosxcos2x =1cosx  \dfrac{{dy}}{{dx}} = \dfrac{{\cos x}}{{{{\cos }^2}x}} \\\ = \dfrac{1}{{\cos x}} \\\

We know that secx=1cosx\sec x = \dfrac{1}{{\cos x}}
Using this in the equation we get

dydx=1cosx=secx dydx=secx  \dfrac{{dy}}{{dx}} = \dfrac{1}{{\cos x}} = \sec x \\\ \dfrac{{dy}}{{dx}} = \sec x \\\

Put the value of yy that is y=loge(1+sinx1sinx)12y = {\log _e}{\left( {\dfrac{{1 + \sin x}}{{1 - \sin x}}} \right)^{\dfrac{1}{2}}} in the above equation we get
d(loge(1+sinx1sinx)12)dx=secx\dfrac{{d\left( {lo{g_e}{{\left( {\dfrac{{1 + \sin x}}{{1 - \sin x}}} \right)}^{\dfrac{1}{2}}}} \right)}}{{dx}} = \sec x
Hence, the differential coefficient of the given function loge1+sinx1sinx{\log _e}\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} is secx\sec x

So, the correct answer is “Option 2”.

Note:
In the question, we cannot directly differentiate with respect to xx otherwise it gets complicated. Before differentiation, we have to use the properties of the logarithmic function. We can directly solve by differentiating the given function but it is a lengthy one.
Trigonometric identities are equalities that involve trigonometric functions and are useful whenever trigonometric functions are involved in an expression or an equation. Six basic trigonometric ratios are sine, cosine, tangent, cosecant, secant, and cotangent and all the fundamental trigonometric identities are derived from the six trigonometric ratios.