Solveeit Logo

Question

Question: Find the differential coefficient of \[\sin x\] by first principal....

Find the differential coefficient of sinx\sin x by first principal.

Explanation

Solution

In this problem, we need to use the first principle to obtain the derivative of the given expression. Next, use the trigonometric identities to solve the limit used in first principle. In this problem, the differential coefficient of sinx\sin x is a measure of rate of change with respect toxx.

Complete step by step answer:
The derivative of a function is a measure of the rate of change. The derivative of a function y=f(x)y = f\left( x \right), using the first principle is shown below.
dydx=limh0f(x+h)f(x)h\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}
Now, substitute sinx\sin x for f(x)f\left( x \right) in the above formula, to obtain the differential coefficient of sinx\sin x.

dydx=limh0sin(x+h)sin(x)h dydx=limh0sinxcosh+cosxsinhsinxh(sin(A+B)=sinAcosB+cosAsinB) dydx=limh0sinx(cosh1)+cosxsinhh dydx=limh0sinx(cosh1)h+limh0cosxsinhh  \,\,\,\,\,\,\,\,\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h} \right) - \sin \left( x \right)}}{h} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin x\cosh + \cos x\sinh - \sin x}}{h}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B} \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin x\left( {\cosh - 1} \right) + \cos x\sinh }}{h} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin x\left( {\cosh - 1} \right)}}{h} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\sinh }}{h} \\\

Further, simplify the above expression.

dydx=sinxlimh0(cosh1)h+cosxlimh0sinhh dydx=sinxlimh0(1h22!+h44!1)h+cosx(1)(cosx=1x22!+x44!) dydx=sinxlimh0(h22!+h44!)h+cosx dydx=sinxlimh0(h2!+h34!)+cosx dydx=sinx(0)+cosx dydx=cosx  \,\,\,\,\,\,\,\dfrac{{dy}}{{dx}} = \sin x\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\cosh - 1} \right)}}{h} + \cos x\mathop {\lim }\limits_{h \to 0} \dfrac{{\sinh }}{h} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \sin x\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {1 - \dfrac{{{h^2}}}{{2!}} + \dfrac{{{h^4}}}{{4!}} - \ldots \ldots - 1} \right)}}{h} + \cos x\left( 1 \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\cos x = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \ldots \ldots } \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \sin x\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( { - \dfrac{{{h^2}}}{{2!}} + \dfrac{{{h^4}}}{{4!}} - \ldots \ldots } \right)}}{h} + \cos x \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \sin x\mathop {\lim }\limits_{h \to 0} \left( { - \dfrac{h}{{2!}} + \dfrac{{{h^3}}}{{4!}} - \ldots \ldots } \right) + \cos x \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \sin x\left( 0 \right) + \cos x \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \cos x \\\

Thus, the differential coefficient of sinx\sin x is cosx\cos x.

Note: If ff be a function of time, then the derivative of ff with respect to time represents the rate of change of ff with respect to time.
The expansion of the cosx\cos x using Taylor series is shown below.
cosx=1x22!+x44!x66!+\cos x = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + \ldots \ldots