Question
Question: Find the determinant of matrix with row one 9,1,3 row two 4,6,7 row three 2,-5,10...
Find the determinant of matrix with row one 9,1,3 row two 4,6,7 row three 2,-5,10
733
Solution
The given matrix is A=94216−53710.
The determinant of a 3x3 matrix adgbehcfi is given by the formula: det(A)=a(ei−fh)−b(di−fg)+c(dh−eg)
Using this formula for the given matrix: a=9,b=1,c=3 d=4,e=6,f=7 g=2,h=−5,i=10
det(A)=9×((6)(10)−(7)(−5))−1×((4)(10)−(7)(2))+3×((4)(−5)−(6)(2)) det(A)=9×(60−(−35))−1×(40−14)+3×(−20−12) det(A)=9×(60+35)−1×(26)+3×(−32) det(A)=9×(95)−26−96 det(A)=855−26−96 det(A)=855−(26+96) det(A)=855−122 det(A)=733
The determinant of the matrix is 733.
Alternative method:
Calculate the determinant of the 3x3 matrix 94216−53710 using the cofactor expansion method along the first row. det(A)=9×det(6−5710)−1×det(42710)+3×det(426−5) det(A)=9×((6)(10)−(7)(−5))−1×((4)(10)−(7)(2))+3×((4)(−5)−(6)(2)) det(A)=9×(60+35)−1×(40−14)+3×(−20−12) det(A)=9×95−1×26+3×(−32) det(A)=855−26−96 det(A)=855−122 det(A)=733