Solveeit Logo

Question

Question: Find the derivative using first principle : \(\sin \sqrt x \)...

Find the derivative using first principle : sinx\sin \sqrt x

Explanation

Solution

The derivative using the first principle is given by the formula limh0[f(x+h)f(x)h]\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{f(x + h) - f(x)}}{h}} \right] , where f(x)f(x) is the function to be differentiation with respect to xx , and hh is tending to zero.

Complete step by step answer:
In the equation, we have to find the derivative of sinx\sin \sqrt x with respect to xx from first principles.
So, for that we will use the formula limh0[f(x+h)f(x)h]\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{f(x + h) - f(x)}}{h}} \right] , here the function to be differentiated is f(x)=sinxf(x) = \sin \sqrt x . Now as per the formula, we have the required derivative as :
=limh0[f(x+h)f(x)h]= \mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{f(x + h) - f(x)}}{h}} \right]
=limh0[sin(x+h)sinxh]= \mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin \sqrt {(x + h)} - \sin \sqrt x }}{h}} \right]
Here we can see that the limit is of the form 00\dfrac{0}{0} , as we have
limh0sinx+h=sinx\mathop {\lim }\limits_{h \to 0} \sin \sqrt {x + h} = \sin \sqrt x
So limh0[sin(x+h)sinxh]=00\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin \sqrt {(x + h)} - \sin \sqrt x }}{h}} \right] = \dfrac{0}{0}
Hence , here we will use the L-Hospitals’ rule, where we differentiate the numerator and denominator separately, as follows:
limh0[sin(x+h)sinxh]\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin \sqrt {(x + h)} - \sin \sqrt x }}{h}} \right]
= \mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{d}{{dh}}\left\\{ {\sin \sqrt {(x + h)} - \sin \sqrt x } \right\\}}}{{\dfrac{d}{{dh}}(h)}}} \right]
We know that the derivative of \dfrac{d}{{dh}}\left\\{ {\sin \sqrt {(x + h)} } \right\\} = \dfrac{{\cos \sqrt {x + h} }}{{2\sqrt {x + h} }} and \dfrac{d}{{dh}}\left\\{ {\sin \sqrt x } \right\\} = 0
Putting these in the above function and we get
=limh0[(cos(x+h))×12x+h01]= \mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\left( {\cos \sqrt {(x + h)} } \right) \times \dfrac{1}{{2\sqrt {x + h} }} - 0}}{1}} \right]
Simplifying, we get
=limh0cosx+h2x+h= \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \sqrt {x + h} }}{{2\sqrt {x + h} }}
Putting h=0h = 0 in the above function and we get
=cosx2x= \dfrac{{\cos \sqrt x }}{{2\sqrt x }}
So final, we can say that
limh0[f(x+h)f(x)h]\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{f(x + h) - f(x)}}{h}} \right]
=limh0[sin(x+h)sinxh]= \mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin \sqrt {(x + h)} - \sin \sqrt x }}{h}} \right]
Simplifying , we get
=cosx2x= \dfrac{{\cos \sqrt x }}{{2\sqrt x }}
Hence the derivative of sinx\sin \sqrt x is cosx2x\dfrac{{\cos \sqrt x }}{{2\sqrt x }} .

Note: The limit of the expression is to be found carefully, and applying the L-Hospitals’ rule, we will separately differentiate the numerator and the denominator and will not use the quotient rule of differentiation.