Solveeit Logo

Question

Question: Find the derivative of \(y = {\sinh ^{ - 1}}(2x)\) ?...

Find the derivative of y=sinh1(2x)y = {\sinh ^{ - 1}}(2x) ?

Explanation

Solution

Calculate the derivative of the function y=sinh1(2x)y = {\sinh ^{ - 1}}(2x).
Apply the chain rule to solve this question,
Use chain rule : Consider y=f(u)y = f(u) and u=g(x)u = g(x) are differentiable functions. Then is derivative is given by, dydx=dydu×dudx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}}
Take y=sinh1uy = {\sinh ^{ - 1}}u and u=2xu = 2x , then find derivatives dydu\dfrac{{dy}}{{du}} and dudx\dfrac{{du}}{{dx}}.
Use the derivative of the inverse hyperbolic formulas ; ddxsinh1x=11+x2\dfrac{d}{{dx}}{\sinh ^{ - 1}}x = \dfrac{1}{{\sqrt {1 + {x^2}} }} .

Complete step by step answer:
Consider the function y=sinh1(2x)y = {\sinh ^{ - 1}}(2x).
Apply the Chain rule: Consider y=f(u)y = f(u) and u=g(x)u = g(x) are differentiable functions. Then is derivative is given by,
dydx=dydu×dudx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}}
Here, y=sinh1uy = {\sinh ^{ - 1}}u and u=2xu = 2x.
Find derivative of y=sinh1uy = {\sinh ^{ - 1}}u,
d(sinh1u)du=11+u2(1)\dfrac{{d\left( {{{\sinh }^{ - 1}}u} \right)}}{{du}} = \dfrac{1}{{\sqrt {1 + {u^2}} }} \ldots (1)
Find derivative of u=2xu = 2x,
d(2x)dx=2(2)\dfrac{{d\left( {2x} \right)}}{{dx}} = 2 \ldots (2)
The derivative of xx is 11 .
Multiply equation (1)(1) and equation (2)(2).
dydx=11+u2×2\dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {1 + {u^2}} }} \times 2
dydx=21+u2\dfrac{{dy}}{{dx}} = \dfrac{2}{{\sqrt {1 + {u^2}} }}
Substitute u=2xu = 2x into the derivativedydx=21+u2\dfrac{{dy}}{{dx}} = \dfrac{2}{{\sqrt {1 + {u^2}} }}.
dydx=21+(2x)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{2}{{\sqrt {1 + {{(2x)}^2}} }}
dydx=21+4x2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{2}{{\sqrt {1 + 4{x^2}} }}
Final Answer: The derivative of y=sinh1(2x)y = {\sinh ^{ - 1}}(2x) is dydx=21+4x2\dfrac{{dy}}{{dx}} = \dfrac{2}{{\sqrt {1 + 4{x^2}} }}.

Note: Find the list of formulas of derivative of he hyperbolic function,
ddx(sinhx)=coshx\dfrac{d}{{dx}}(\sinh x) = \cosh x
ddx(coshx)=sinhx\dfrac{d}{{dx}}(\cosh x) = \sinh x
ddx(tanhx)=sech2x\dfrac{d}{{dx}}(\tanh x) = {\operatorname{sech} ^2}x
ddxsinh1x=11+x2\dfrac{d}{{dx}}{\sinh ^{ - 1}}x = \dfrac{1}{{\sqrt {1 + {x^2}} }}
ddxcosh1x=1x21\dfrac{d}{{dx}}{\cosh ^{ - 1}}x = \dfrac{1}{{\sqrt {{x^2} - 1} }}
ddxtanh1x=11x2\dfrac{d}{{dx}}{\tanh ^{ - 1}}x = \dfrac{1}{{1 - {x^2}}}