Solveeit Logo

Question

Question: Find‌ ‌the‌ ‌derivative‌ ‌of‌ ‌\(y={{\log‌ ‌}_{10}}x\).‌...

Find‌ ‌the‌ ‌derivative‌ ‌of‌ ‌y=log‌‌10xy={{\log‌ ‌}_{10}}x.‌

Explanation

Solution

We first have to change the base of the logarithm as the derivative of logarithm ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} works for base being ee. We change the base following the rule of logarithm of logab=logmblogma{{\log }_{a}}b=\dfrac{{{\log }_{m}}b}{{{\log }_{m}}a}. We get y=log10x=lnxln10y={{\log }_{10}}x=\dfrac{\ln x}{\ln 10}. Then we take derivatives to get 1xln10\dfrac{1}{x\ln 10}.

Complete step-by-step solution:
We know that differentiation of v(x)=lnxv\left( x \right)=\ln x is v(x)=1x{{v}^{'}}\left( x \right)=\dfrac{1}{x}.
We also know that lna=logea\ln a={{\log }_{e}}a.
Therefore, we have to change the base of the logarithm from y=log10xy={{\log }_{10}}x to v(x)=lnxv\left( x \right)=\ln x.
We know that logab=logmblogma{{\log }_{a}}b=\dfrac{{{\log }_{m}}b}{{{\log }_{m}}a}. We use the value of m=em=e for y=log10xy={{\log }_{10}}x.
y=log10x=logexloge10y={{\log }_{10}}x=\dfrac{{{\log }_{e}}x}{{{\log }_{e}}10}. Now the value of loge10{{\log }_{e}}10 is constant.
We can write y=log10x=lnxln10y={{\log }_{10}}x=\dfrac{\ln x}{\ln 10}.
Now we find the derivative of the y=log10x=lnxln10y={{\log }_{10}}x=\dfrac{\ln x}{\ln 10} as ddx(lnxln10)\dfrac{d}{dx}\left( \dfrac{\ln x}{\ln 10} \right) .
The constant gets out at the start. So, ddx(lnxln10)=1ln10ddx(lnx)\dfrac{d}{dx}\left( \dfrac{\ln x}{\ln 10} \right)=\dfrac{1}{\ln 10}\dfrac{d}{dx}\left( \ln x \right).
We use the derivative formula of ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} and get
ddx(lnxln10)=1ln10ddx(lnx)=1xln10\dfrac{d}{dx}\left( \dfrac{\ln x}{\ln 10} \right)=\dfrac{1}{\ln 10}\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x\ln 10}.
Therefore, the derivative of y=log10xy={{\log }_{10}}x is 1xln10\dfrac{1}{x\ln 10}.

Note: If the ratio of ΔyΔx\dfrac{\Delta y}{\Delta x} tends to a definite finite limit when Δx0\Delta x\to 0, then the limiting value obtained by this can also be found by first order derivative. We can also apply a first order derivative theorem to get the differentiated value of lnx\ln x.
We know that dydx=limh0f(x+h)f(x)h\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}. Here f(x)=lnxf\left( x \right)=\ln x. Also, f(x+h)=ln(x+h)f\left( x+h \right)=\ln \left( x+h \right).
So, dfdx=limh0f(x+h)f(x)h=limh0ln(x+h)ln(x)h\dfrac{df}{dx}=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}=\displaystyle \lim_{h \to 0}\dfrac{\ln \left( x+h \right)-\ln \left( x \right)}{h}.
We know the limit value limh0ln(1+hx)hx×1x=1x\displaystyle \lim_{h \to 0}\dfrac{\ln \left( 1+\dfrac{h}{x} \right)}{\dfrac{h}{x}}\times \dfrac{1}{x}=\dfrac{1}{x}.
Therefore, dfdx=limh0ln(x+h)ln(x)h=1x\dfrac{df}{dx}=\displaystyle \lim_{h \to 0}\dfrac{\ln \left( x+h \right)-\ln \left( x \right)}{h}=\dfrac{1}{x}.