Question
Question: Find the derivative of \(y = \ln \left( {\tan x} \right)\)....
Find the derivative of y=ln(tanx).
Solution
We know Chain Rule: (f(g(x)))=f′(g(x))g′(x)
By using Chain rule we can solve this problem. Since we cannot find the direct derivative of the given question we have to use the chain rule. So we must convert our question in the form of the equation above such that we have to find the values of every term in the above equation and substitute it back. In that way we would be able to find the solution for the given question.
Complete step by step solution:
Given
y=ln(tanx)........................(i)
So according to our question we need to find dxdy=dxdln(tanx)
Thus here we can use chain rule to find the derivative since we can’t find the derivative with any direct equation.
Now we know that chain rule is:f(g(x))=f′(g(x))g′(x).......................(ii)
Such that on comparing (ii), if:
\dfrac{{dy}}{{dx}} = \dfrac{{d\ln \left( {\tan x} \right)}}{{dx}} = f'(g(x))g'(x) \\
\Rightarrow \dfrac{{d\ln \left( {\tan x} \right)}}{{dx}} = \dfrac{d}{{du}}\left( {\ln u}
\right)\dfrac{d}{{dx}}\left( {\tan x} \right)..............................\left( v \right) \\
\Rightarrow \dfrac{{d\ln \left( {\tan x} \right)}}{{dx}} = \dfrac{d}{{du}}\left( {\ln u}
\right)\dfrac{d}{{dx}}\left( {\tan x} \right) \\
\Rightarrow \dfrac{{d\ln \left( {\tan x} \right)}}{{dx}} = \dfrac{1}{u}\dfrac{d}{{dx}}\left( {\tan x}
\right).................................\left( {vi} \right) \\
\Rightarrow \dfrac{{d\ln \left( {\tan x} \right)}}{{dx}} = \dfrac{{\cos x}}{{\sin x}} \times \left(
{\dfrac{1}{{{{\cos }^2}x}}} \right) \\
\Rightarrow \dfrac{{d\ln \left( {\tan x} \right)}}{{dx}} = \dfrac{1}{{\sin x}} \times \left(
{\dfrac{1}{{\cos x}}} \right) \\
\Rightarrow \dfrac{{d\ln \left( {\tan x} \right)}}{{dx}} = \csc x \times \sec x..................\left( {ix}
\right) \\
\dfrac{d}{{dx}}\tan x = {\sec ^2}x \\
\dfrac{d}{{dx}}\ln x = \dfrac{1}{x} \\