Solveeit Logo

Question

Question: Find the derivative of \(y = \dfrac{x}{{x - 1}}\) ....

Find the derivative of y=xx1y = \dfrac{x}{{x - 1}} .

Explanation

Solution

We will use quotient rule to find the derivative. According to the quotient rule, if two functions, say f(x) and g(x), the derivative of f(x)g(x)\dfrac{{f(x)}}{{g(x)}} will be ddx(f(x)g(x))=g(x)df(x)dxf(x)dg(x)dx(g(x))2\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{{df\left( x \right)}}{{dx}} - f\left( x \right)\dfrac{{dg\left( x \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}} . Furthermore, differentiate the functions f(x) and g(x) separately. As a result, if the answer is reducible, it should be simplified.

Complete step by step answer:
We have to find the derivative of y=xx1y = \dfrac{x}{{x - 1}}
We will assume f(x)=xf(x) = x and g(x)=x1g(x) = x - 1 . then, we will use quotient rule
ddx(f(x)g(x))=g(x)df(x)dxf(x)dg(x)dx(g(x))2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{{df\left( x \right)}}{{dx}} - f\left( x \right)\dfrac{{dg\left( x \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}} (1)
Here, we don’t know the value of ddxf(x)\dfrac{d}{{dx}}f(x) and ddxg(x)\dfrac{d}{{dx}}g(x)
We will first find the value of ddxf(x)\dfrac{d}{{dx}}f(x) and ddxg(x)\dfrac{d}{{dx}}g(x)
So, using the formula ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} ,we will find the derivative
ddxf(x)=ddxx=1\Rightarrow \dfrac{d}{{dx}}f(x) = \dfrac{d}{{dx}}x = 1
ddxg(x)=ddx(x1)=1\Rightarrow \dfrac{d}{{dx}}g(x) = \dfrac{d}{{dx}}(x - 1) = 1
We will now put the value in the equation 1
ddx(f(x)g(x))=g(x)df(x)dxf(x)dg(x)dx(g(x))2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{{df\left( x \right)}}{{dx}} - f\left( x \right)\dfrac{{dg\left( x \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}
ddx(xx1)=(x1)1x1(x1)2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{x - 1}}} \right) = \dfrac{{(x - 1)1 - x1}}{{{{\left( {x - 1} \right)}^2}}}
ddx(xx1)=1(x1)2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{x - 1}}} \right) = \dfrac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}
Hence, the derivative of y=xx1y = \dfrac{x}{{x - 1}} is 1(x1)2\dfrac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}} .

Note:
When two functions are in division form, the quotient rule of differentiation should always be used. Because there is a function in the denominator, there is no other method to solve this derivative. Keep in mind that attempting to simplify the function such that it is no longer in fraction form will just make it more complicated.