Question
Question: Find the derivative of \(y = \dfrac{{\ln 2x}}{{{e^{2x}} + 2}}\)....
Find the derivative of y=e2x+2ln2x.
Solution
The given function is a fraction. So we can use quotient rules for finding derivatives. For that, we have to find the derivative of the numerator and denominator separately. Then substituting and simplifying we get the answer.
Formula used: Quotient rule for finding derivatives:
For a function y=g(x)f(x), dxdy=(g(x))2g(x)f′(x)−f(x)g′(x)
Where f′(x),g′(x) denotes the derivatives of the functions f(x),g(x).
dxd(lnx)=x1
dxdex=ex
Chain rule: To find the derivative of composite functions.
Let y=f(g(x)), dxdy=f′(x)g(x)⋅g′(x)
Complete step-by-step answer:
The given function is y=e2x+2ln2x
We can see the function is the quotient of two functions ln2x and e2x+2.
We need to find its derivative.
For a function, y=g(x)f(x), dxdy=(g(x))2g(x)f′(x)−f(x)g′(x) (quotient rule of derivatives)
Where f′(x),g′(x) denotes the derivatives of the functions f(x),g(x).
So here we have f(x)=ln2x and g(x)=e2x+2.
For, y=f(g(x)), dxdy=f′(x)g(x)⋅g′(x)
So here we have,
f′(x)=2x1×2=x1 and g(x)=e2x×2=2e2x
Since dxd(lnx)=x1 and dxdex=ex
Substituting we have,
dxdy=(e2x+2)2(e2x+2)×x1−(ln2x)×2e2x
⇒dxdy=(e2x+2)2xe2x+x2−2e2xln2x
Therefore, derivative of the given function is (e2x+2)2xe2x+x2−2e2xln2x.
Note: Like the quotient rule, we have other rules for finding the derivative.
(i) Product rule: To find the derivative of a product of two functions f(x) and g(x)
Let y=f(x)g(x), dxdy=f(x)g′(x)+g(x)f′(x)
(ii) Chain rule: To find the derivative of composite functions.
Let y=f(g(x)), dxdy=f′(x)g(x)⋅g′(x)
lnx represents the natural logarithm or logarithm to the base of the mathematical constant e. If considered as a real valued function, it is the inverse function of the exponential function.