Solveeit Logo

Question

Mathematics Question on limits and derivatives

Find the derivative of (x2+1)cosx(x^2 + 1)\, cos\, x.

A

2xcosx(x2+1)sinx2x\, cos \,x - (x^2 + 1) sin \,x

B

2xsinxx2cosx2x \,sin\, x - x^2 \,cos\, x

C

x2(cosxsinx)x^{2}\left(cos\,x-sin\,x\right)

D

2x(sinx+cosx)2x(sin\, x + cos\, x)

Answer

2xcosx(x2+1)sinx2x\, cos \,x - (x^2 + 1) sin \,x

Explanation

Solution

Let f(x)=(x2+1)cosxf(x) = (x^2 + 1) cos\, x f(x)=(x2+1)cosx+(cosx)(x2+1)\therefore f'\left(x\right)=\left(x^{2}+1\right)'cos\,x+\left(cos\,x\right)'\left(x^{2}+1\right) =(2x+0)cosx+(sinx)(x2+1)= \left(2x + 0\right)cos \,x + \left(-sin\, x\right)\left(x^{2} + 1\right) =2xcosx(x2+1)sinx=2x\,cos\,x-\left(x^{2}+1\right)sin\, x