Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find the derivative of the function given by f(x)=(1+x)(1+x2)(1+x4)(1+x8)f(x)=(1+x)(1+x^2)(1+x^4)(1+x^8) and hence find f(1)f'(1)

Answer

The given relationship is f(x)=(1+x)(1+x2)(1+x4)(1+x8)f(x)=(1+x)(1+x^2)(1+x^4)(1+x^8)
Taking logarithm on both the sides,we obtain
logf(x)=log(1+x)+log(1+x2)+log(1+x4)+log(1+x8)log f(x)=log(1+x)+log(1+x^2)+log(1+x^4)+log(1+x^8)
Differentiating both sides with respect to xx, we obtain
\frac{1}{f(x)}.\frac{d}{dx}[f(x)]=\frac{d}{dx}log(1+x)+\frac{d}{dx}(1+x^2)+\frac{d}{dx}(1+x^4)+\frac{d}{dx}(1+x^8)$$⇒\frac{1}{f(x)}.f'(x)=\frac{1}{1+x}.\frac{d}{dx}(1+x)+\frac{1}{1+x^2}\frac{d}{dx}(1+x^2)+\frac{1}{1+x^4}\frac{d}{dx}(1+x^4)+\frac{1}{1+x^8}\frac{d}{dx}(1+x^8)
f(x)=f(x)[11+x+11+x2.2x+11+x4.4x3+11+x8.8x7]⇒f'(x)=f(x)[\frac{1}{1+x}+\frac{1}{1+x^2}.2x+\frac{1}{1+x^4}.4x^3+\frac{1}{1+x^8}.8x^7]
f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]f'(x)=(1+x)(1+x^2)(1+x^4)(1+x^8)[\frac{1}{1+x}+\frac{2x}{1+x^2}+\frac{4x^3}{1+x^4}+\frac{8x^7}{1+x^8}]
f(1)=(1+1)(1+12)(1+14)(1+18)[11+1+2×11+12+4×131+14+8×171+18]f'(1)=(1+1)(1+1^2)(1+1^4)(1+1^8)\bigg[\frac{1}{1+1}+\frac{2\times 1}{1+1^2}+\frac{4\times 1^3}{1+1^4}+\frac{8\times 1^7}{1+1^8}\bigg]
=2×2×2×2[12+22+42+82]=2\times2\times2\times2[\frac{1}{2}+\frac{2}{2}+\frac{4}{2}+\frac{8}{2}]
=16(1+2+4+82)=16(\frac{1+2+4+8}{2})
=16×152=120=16\times \frac{15}{2} =120