Question
Mathematics Question on Continuity and differentiability
Find the derivative of the function given by f(x)=(1+x)(1+x2)(1+x4)(1+x8) and hence find f′(1)
The given relationship is f(x)=(1+x)(1+x2)(1+x4)(1+x8)
Taking logarithm on both the sides,we obtain
logf(x)=log(1+x)+log(1+x2)+log(1+x4)+log(1+x8)
Differentiating both sides with respect to x, we obtain
\frac{1}{f(x)}.\frac{d}{dx}[f(x)]=\frac{d}{dx}log(1+x)+\frac{d}{dx}(1+x^2)+\frac{d}{dx}(1+x^4)+\frac{d}{dx}(1+x^8)$$⇒\frac{1}{f(x)}.f'(x)=\frac{1}{1+x}.\frac{d}{dx}(1+x)+\frac{1}{1+x^2}\frac{d}{dx}(1+x^2)+\frac{1}{1+x^4}\frac{d}{dx}(1+x^4)+\frac{1}{1+x^8}\frac{d}{dx}(1+x^8)
⇒f′(x)=f(x)[1+x1+1+x21.2x+1+x41.4x3+1+x81.8x7]
f′(x)=(1+x)(1+x2)(1+x4)(1+x8)[1+x1+1+x22x+1+x44x3+1+x88x7]
f′(1)=(1+1)(1+12)(1+14)(1+18)[1+11+1+122×1+1+144×13+1+188×17]
=2×2×2×2[21+22+24+28]
=16(21+2+4+8)
=16×215=120