Solveeit Logo

Question

Question: Find the derivative of the following \[y={{\tan }^{-1}}\sqrt{x}\]...

Find the derivative of the following
y=tan1xy={{\tan }^{-1}}\sqrt{x}

Explanation

Solution

Hint : To solve the above problem we have to know the basic derivatives of tan1x{{\tan }^{-1}}xand x\sqrt{x}. After writing the derivatives rewrite the equation with the derivatives of the function.
ddx(tan1x)=11+x2\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}, ddxx=12x\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}. We can see one function is inside another we have to find internal derivatives.

Complete step-by-step answer :
The composite function rule shows us a quicker way. If f(x) = h(g(x)) then f (x) = h (g(x)) × g (x). In words: differentiate the 'outside' function, and then multiply by the derivative of the 'inside' function. ... The composite function rule tells us that f (x) = 17(x2 + 1)16 × 2x.

y=tan1xy={{\tan }^{-1}}\sqrt{x}. . . . . . . . . . . . . . . . . . . . . (a)
ddx(tan1x)=11+x2\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
ddxx=12x\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting (1) and (2) as derivatives we get,
Therefore derivative of the given function is,
y1=ddx(tan1x){{y}^{1}}=\dfrac{d}{dx}\left( {{\tan }^{-1}}\sqrt{x} \right)
We know the derivative of tan1x{{\tan }^{-1}}xand x\sqrt{x}. By writing the derivatives we get,
Further solving we get the derivative of the function as
y1=11+(x)2ddx(x){{y}^{1}}=\dfrac{1}{1+{{\left( \sqrt{x} \right)}^{2}}}\dfrac{d}{dx}\left( \sqrt{x} \right). . . . . . . . . . . . . . . . . . . (3)
By solving we get,
y1=11+x×12x{{y}^{1}}=\dfrac{1}{1+x}\times \dfrac{1}{2\sqrt{x}}
Multiplying 2x2\sqrt{x} with (1+x) and expanding we get,
y1=12x+2xx{{y}^{1}}=\dfrac{1}{2\sqrt{x}+2x\sqrt{x}}
We know that x\sqrt{x} can be written as x12{{x}^{\dfrac{1}{2}}}.
By expressing x\sqrt{x} as x12{{x}^{\dfrac{1}{2}}} we get,
y1=12(x)12+2x(x)12{{y}^{1}}=\dfrac{1}{2{{\left( x \right)}^{\dfrac{1}{2}}}+2x\cdot {{\left( x \right)}^{\dfrac{1}{2}}}}
Applying the rule xx12=x32x\cdot {{x}^{\dfrac{1}{2}}}={{x}^{\dfrac{3}{2}}} we get,
y1=12(x)12+2(x)32{{y}^{1}}=\dfrac{1}{2{{\left( x \right)}^{\dfrac{1}{2}}}+2{{\left( x \right)}^{\dfrac{3}{2}}}}

Note : In the above problem we have solved the derivative of inverse trigonometric function. In (3) the formation of 12x\dfrac{1}{2\sqrt{x}} is due to function in a function. In this case we have to find an internal derivative. Further solving for dydx\dfrac{dy}{dx}made us towards a solution. If we are doing derivative means we are finding the slope of a function. Care should be taken while doing calculations.