Solveeit Logo

Question

Question: Find the derivative of the following: \(y=\sin \left( {{\tan }^{-1}}x \right)\)....

Find the derivative of the following:
y=sin(tan1x)y=\sin \left( {{\tan }^{-1}}x \right).

Explanation

Solution

Hint: Assume sinx=f(x)\sin x=f(x) and tan1x=g(x){{\tan }^{-1}}x=g(x), so that, we get the function of the form f(g(x))f\left( g(x) \right). To find the derivative of the function of the form: f(g(x))f\left( g(x) \right), use the formula: ddx[f(g(x))]=f(g(x))×ddx[g(x)]\dfrac{d}{dx}\left[ f\left( g(x) \right) \right]={{f}^{'}}\left( g(x) \right)\times \dfrac{d}{dx}\left[ g(x) \right]. Use the derivative of sinx\sin x equal to cosx\cos x and the derivative of tan1x=11+x2{{\tan }^{-1}}x=\dfrac{1}{1+{{x}^{2}}}.

Complete step-by-step answer:
Let us assume sinx=f(x)\sin x=f(x) and tan1x=g(x){{\tan }^{-1}}x=g(x), so that, we get the function of the form f(g(x))f\left( g(x) \right). f(g(x))f\left( g(x) \right) is a composite function.
A composite function is a function that depends on another function. It is created when one function is substituted into another function.
Now, to find the derivative of a function of the form f(g(x))f\left( g(x) \right), we use the formula given by: ddx[f(g(x))]=f(g(x))×ddx[g(x)]\dfrac{d}{dx}\left[ f\left( g(x) \right) \right]={{f}^{'}}\left( g(x) \right)\times \dfrac{d}{dx}\left[ g(x) \right].
ddx[f(g(x))] =f(g(x))×ddx[g(x)] =ddx[sin(tan1x)] =cos(tan1x)×ddx[tan1x] \begin{aligned} & \Rightarrow \dfrac{d}{dx}\left[ f\left( g(x) \right) \right] \\\ & ={{f}^{'}}\left( g(x) \right)\times \dfrac{d}{dx}\left[ g(x) \right] \\\ & =\dfrac{d}{dx}\left[ \sin \left( {{\tan }^{-1}}x \right) \right] \\\ & =\cos \left( {{\tan }^{-1}}x \right)\times \dfrac{d}{dx}\left[ {{\tan }^{-1}}x \right] \\\ \end{aligned}
We know that the derivative of tan1x{{\tan }^{-1}}x is 11+x2\dfrac{1}{1+{{x}^{2}}}. Therefore,
ddx[sin(tan1x)]=cos(tan1x)×11+x2\dfrac{d}{dx}\left[ \sin \left( {{\tan }^{-1}}x \right) \right]=\cos \left( {{\tan }^{-1}}x \right)\times \dfrac{1}{1+{{x}^{2}}}

Note: You may note that we have written the given function in the form of a composite function. The reason behind this is that we have to apply the derivative formula: ddx[f(g(x))]=f(g(x))×ddx[g(x)]\dfrac{d}{dx}\left[ f\left( g(x) \right) \right]={{f}^{'}}\left( g(x) \right)\times \dfrac{d}{dx}\left[ g(x) \right]. We can also solve this question by an alternate method. In this alternate method, we have to change the given tan1x{{\tan }^{-1}}x into sine inverse function by assuming ‘x’ as the perpendicular ‘1’ as the base. Once it is converted to a sine inverse function, apply the formula: sin(sin1x)=x\sin \left( {{\sin }^{-1}}x \right)=x, so that we are left with only an algebraic function. Now, we can differentiate this algebraic function easily.