Solveeit Logo

Question

Question: Find the derivative of the following: \(y=\cos e{{c}^{2}}x+{{\cot }^{2}}x\)...

Find the derivative of the following:
y=cosec2x+cot2xy=\cos e{{c}^{2}}x+{{\cot }^{2}}x

Explanation

Solution

Hint: These are the functions of the form [F(x)]n{{\left[ F(x) \right]}^{n}}, where F(x)F(x) is cosecx\cos ecx and cotx\cot x in the first and second term respectively and ‘n’ is 2. Use the formula: ddx[F(x)]n=n[F(x)]n1ddx[F(x)]\dfrac{d}{dx}{{\left[ F\left( x \right) \right]}^{n}}=n{{\left[ F\left( x \right) \right]}^{n-1}}\dfrac{d}{dx}\left[ F\left( x \right) \right], to find the derivative of the given trigonometric function. Use the derivative of cotx\cot x equal to cotxcosecx-\cot x\cos ecx and the derivative of cotx\cot x equal to cosec2x-\cos e{{c}^{2}}x.

Complete step-by-step answer:
We have been provided with the trigonometric function: y=cosec2x+cot2xy=\cos e{{c}^{2}}x+{{\cot }^{2}}x. We have to find its derivative.
Clearly they can be seen as the function of the form: [F(x)]n{{\left[ F(x) \right]}^{n}}. Let us find the derivative of both the terms of ‘y’ separately.
The first term is cosec2x\cos e{{c}^{2}}x. Applying the formula: ddx[F(x)]n=n[F(x)]n1ddx[F(x)]\dfrac{d}{dx}{{\left[ F\left( x \right) \right]}^{n}}=n{{\left[ F\left( x \right) \right]}^{n-1}}\dfrac{d}{dx}\left[ F\left( x \right) \right], where F(x)=cosecxF(x)=\cos ecx and n = 2, we get,

& \dfrac{d}{dx}{{\left[ \cos ecx \right]}^{2}}=2{{\left[ \cos ecx \right]}^{2-1}}\dfrac{d}{dx}\left[ \cos ecx \right] \\\ & =2\cos ecx\dfrac{d}{dx}\left[ \cos ecx \right] \\\ \end{aligned}$$ Using the relation: $\dfrac{d}{dx}\left[ \cos ecx \right]=-\cos ecx\cot x$, we get, $$\begin{aligned} & \dfrac{d}{dx}{{\left[ \cos ecx \right]}^{2}}=2\cos ecx\left( -\cos ecx\cot x \right) \\\ & =-2\cos e{{c}^{2}}x\cot x \\\ \end{aligned}$$ The second term is ${{\cot }^{2}}x$. Applying the formula: $$\dfrac{d}{dx}{{\left[ g\left( x \right) \right]}^{n}}=n{{\left[ g\left( x \right) \right]}^{n-1}}\dfrac{d}{dx}\left[ g\left( x \right) \right]$$, where $g(x)=\cot x$ and n = 2, we get, $$\begin{aligned} & \dfrac{d}{dx}{{\left[ \cot x \right]}^{2}}=2{{\left[ \cot x \right]}^{2-1}}\dfrac{d}{dx}\left[ \cot x \right] \\\ & =2\cot x\dfrac{d}{dx}\left[ \cot x \right] \\\ \end{aligned}$$ Using the relation: $\dfrac{d}{dx}\left[ \cot x \right]=-\cos e{{c}^{2}}x$, we get, $$\begin{aligned} & \dfrac{d}{dx}{{\left[ \cot x \right]}^{2}}=2\cot x\left( -\cos e{{c}^{2}}x \right) \\\ & =-2\cot x\cos e{{c}^{2}}x \\\ \end{aligned}$$ Now, we have, $\begin{aligned} & \dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \cos e{{c}^{2}}x+{{\cot }^{2}}x \right] \\\ & =\dfrac{d}{dx}\left[ \cos e{{c}^{2}}x \right]+\dfrac{d}{dx}\left[ {{\cot }^{2}}x \right] \\\ & =-2\cos e{{c}^{2}}x\cot x+\left( -2\cos e{{c}^{2}}x\cot x \right) \\\ & =-4\cos e{{c}^{2}}x\cot x \\\ \end{aligned}$ Note: One may note that we have an alternate method to solve this question. We have to use the identity: $\cos e{{c}^{2}}x=1+{{\cot }^{2}}x$ to convert the given function into a function containing a single trigonometric ratio. The main advantage of this method is that we have to find the derivative of only one trigonometric ratio, that is either $\cos ecx$ or $\cot x$. The other term will be a constant and its derivative will be zero.