Solveeit Logo

Question

Question: Find the derivative of the following: - \[y={{2}^{x}}-3{{e}^{x}}-{{4}^{x}}\]...

Find the derivative of the following: - y=2x3ex4xy={{2}^{x}}-3{{e}^{x}}-{{4}^{x}}

Explanation

Solution

Hint: Use basic formulae for derivative of ax,xa&ex{{a}^{x}},{{x}^{a}}\And {{e}^{x}}.

We have expression/function
y=2x3ex4x(1)y={{2}^{x}}-3{{e}^{x}}-{{4}^{x}}-(1)
Now, let us differentiate the given function as,
dydx=ddx(2x3ex4x)\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{2}^{x}}-3{{e}^{x}}-{{4}^{x}} \right)
One important rule should be applied here as stated below:
If we have nn functions f1(x),f2(x),f3(x)......fn(x){{f}_{1}}(x),{{f}_{2}}(x),{{f}_{3}}(x)......{{f}_{n}}(x) and λ1,λ2,λ3......λn{{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}}......{{\lambda }_{n}} are constants in function y'y' as written below:
y=λ1f1(x)+λ2f2(x)+λ3f3(x)+......+λnfn(x)y={{\lambda }_{1}}{{f}_{1}}(x)+{{\lambda }_{2}}{{f}_{2}}(x)+{{\lambda }_{3}}{{f}_{3}}(x)+......+{{\lambda }_{n}}{{f}_{n}}(x).
Now, if we differentiate the above given function yy , then we will get
dydx=ddx[λ1f1(x)+λ2f2(x)+λ3f3(x)+......+λnfn(x)] dydx=ddx[λ1f1(x)]+ddx[λ2f2(x)]+ddx[λ3f3(x)]+....+ddx[λnfn(x)] dydx=λ1ddx[f1(x)]+λ2ddx[f2(x)]+λ3ddx[f3(x)]+....+λnddx[fn(x)]........(2) \begin{aligned} & \dfrac{dy}{dx}=\dfrac{d}{dx}\left[ {{\lambda }_{1}}{{f}_{1}}(x)+{{\lambda }_{2}}{{f}_{2}}(x)+{{\lambda }_{3}}{{f}_{3}}(x)+......+{{\lambda }_{n}}{{f}_{n}}(x) \right] \\\ & \dfrac{dy}{dx}=\dfrac{d}{dx}\left[ {{\lambda }_{1}}{{f}_{1}}(x) \right]+\dfrac{d}{dx}\left[ {{\lambda }_{2}}{{f}_{2}}(x) \right]+\dfrac{d}{dx}\left[ {{\lambda }_{3}}{{f}_{3}}(x) \right]+....+\dfrac{d}{dx}\left[ {{\lambda }_{n}}{{f}_{n}}(x) \right] \\\ & \dfrac{dy}{dx}={{\lambda }_{1}}\dfrac{d}{dx}\left[ {{f}_{1}}(x) \right]+{{\lambda }_{2}}\dfrac{d}{dx}\left[ {{f}_{2}}(x) \right]+{{\lambda }_{3}}\dfrac{d}{dx}\left[ {{f}_{3}}(x) \right]+....+{{\lambda }_{n}}\dfrac{d}{dx}\left[ {{f}_{n}}(x) \right]........(2) \\\ \end{aligned}
So if functions are written in summation, then we can differentiate them individually. Using the above property in equation (1) as follows:

& \dfrac{dy}{dx}=\dfrac{d}{dx}({{2}^{x}}-3{{e}^{x}}-{{4}^{x}}) \\\ & \dfrac{d}{dx}=\dfrac{d}{dx}({{2}^{x}})-\dfrac{d}{dx}(3{{e}^{x}})-\dfrac{d}{dx}({{4}^{x}}) \\\ \end{aligned}$$ Here, we can observe that ${{2}^{x}}$ is of type (Constant)function or ${{(\lambda )}^{f(x)}}$\ . So, we have formula for it as, $\dfrac{d}{dx}({{a}^{x}})={{a}^{x}}\ln a$ Hence, $\dfrac{d}{dx}({{2}^{x}})={{2}^{x}}\ln 2.........(4)$ Now, ${{e}^{x}}$ is exponential function and derivative of it is given as, $\dfrac{d}{dx}({{e}^{x}})={{e}^{x}}........(5)$ Similarly, $\dfrac{d}{dx}({{4}^{x}})$ can be calculated by $\dfrac{d}{dx}({{a}^{x}})={{a}^{x}}\ln a$ formula as, $\dfrac{d}{dx}({{4}^{x}})={{4}^{x}}\ln 4.........(6)$ Putting the values of equation (4), (5) and (6) in equation (3) for calculating, $$\dfrac{dy}{dx}={{2}^{x}}\ln 2-3{{e}^{x}}-{{4}^{x}}\ln 4$$ Note: Student need to very clear with the functions like ${{a}^{x}},{{x}^{a}},{{x}^{x}},{{a}^{a}}$ . Now we can calculate the differentiation of above by applying the multiplication rule. Therefore, we need to be very clear with the above discussed functions and their differentiation. So, we need to be very clear with the basic formulas. The common mistake is student forget to notice (Constant)function or ${{(\lambda )}^{f(x)}}$kind of function and makes mistake in correct calculation, i.e., $\dfrac{d}{dx}({{a}^{x}})={{a}^{x}}\ln a$