Solveeit Logo

Question

Question: Find the derivative of the following \[x{{e}^{y}}+1=xy\]...

Find the derivative of the following xey+1=xyx{{e}^{y}}+1=xy

Explanation

Solution

Hint: To solve the above problem we have to know the basic derivatives of functions. To solve further we have to use the uv rule. If u and v are two functions of x, then the derivative of the product uv is given by d(uv)dx=udvdx+vdudx\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}.

Complete step-by-step answer:
Given xey+1=xyx{{e}^{y}}+1=xy
Differentiating both sides of the equation we get,
ddx(xey+1)=ddx(xy)\dfrac{d}{dx}\left( x{{e}^{y}}+1 \right)=\dfrac{d}{dx}\left( xy \right)
Now taking the L.H.S term,
ddx(xey+1)\dfrac{d}{dx}\left( x{{e}^{y}}+1 \right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
ddx(x)=1\dfrac{d}{dx}\left( x \right)=1 . . . . . . . . . . . . . . . . . . . . . . . . . (1)
ddx(ex)=ex\dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}} . . . . . . . . . . . . . . . . . . . . . . . . (2)
By differentiating the above term (a) we get
=ey+xeyddx[y]={{e}^{y}}+x{{e}^{y}}\dfrac{d}{dx}\left[ y \right]
Now taking R.H.S term,
ddx(xy)\dfrac{d}{dx}\left( xy \right)
We have seen hints how the uv rule works.
d(uv)dx=udvdx+vdudx\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}
=y+xddx[y]=y+x\dfrac{d}{dx}\left[ y \right]
Reforming the equation by setting the L.H.S =R.H.S
{{e}^{y}}+x{{e}^{y}}\dfrac{d}{dx}\left[ y \right]$$$$=y+x\dfrac{d}{dx}\left[ y \right]
Further solving for dydx\dfrac{dy}{dx}
xeyddx[y]xddx[y]=yeyx{{e}^{y}}\dfrac{d}{dx}\left[ y \right]-x\dfrac{d}{dx}\left[ y \right]=y-{{e}^{y}}
(xeyx)ddx[y]=yey(x{{e}^{y}}-x)\dfrac{d}{dx}\left[ y \right]=y-{{e}^{y}}
dydx=y(xeyx)ey(xeyx)\dfrac{dy}{dx}=\dfrac{y}{(x{{e}^{y}}-x)}-\dfrac{{{e}^{y}}}{(x{{e}^{y}}-x)}

Note: In the above problem we have used the product rule. After using this rule we have got the values for dydx\dfrac{dy}{dx}. Further solving for dydx\dfrac{dy}{dx}made us towards a solution. If we are doing derivative means we are finding the slope of a function. Care should be taken while doing calculations.