Solveeit Logo

Question

Question: Find the derivative of the following: (i) \(\sin x\cos x\)...

Find the derivative of the following:
(i) sinxcosx\sin x\cos x

Explanation

Solution

Hint: For solving this question we will use some standard results differentiation of y=sinxy=\sin x , y=cosxy=\cos x and then apply the product rule of differentiation to differentiate the given term with respect to xx correctly.

Complete step-by-step solution -
Given:
We have to find the derivative of y=sinxcosxy=\sin x\cos x with respect to xx .
Now, before we proceed we should know the following formulas and concepts of trigonometry and differential calculus:
1. If y=f(x)g(x)y=f\left( x \right)\cdot g\left( x \right) , then dydx=d(f(x)g(x))dx=f(x)g(x)+f(x)g(x)\dfrac{dy}{dx}=\dfrac{d\left( f\left( x \right)\cdot g\left( x \right) \right)}{dx}={f}'\left( x \right)\cdot g\left( x \right)+f\left( x \right)\cdot {g}'\left( x \right). This is also known as the product rule of differentiation.
2. If y=sinxy=\sin x , then dydx=d(sinx)dx=cosx\dfrac{dy}{dx}=\dfrac{d\left( \sin x \right)}{dx}=\cos x.
3. If y=cosxy=\cos x , then dydx=d(cosx)dx=sinx\dfrac{dy}{dx}=\dfrac{d\left( \cos x \right)}{dx}=-\sin x.
Now, we will use the above-mentioned formulas and concepts to differentiate y=sinxcosxy=\sin x\cos x with respect to xx.
Now, let y=sinxcosx=f(x)g(x)y=\sin x\cos x=f\left( x \right)\cdot g\left( x \right) . Where, f(x)=sinxf\left( x \right)=\sin x and g(x)=cosxg\left( x \right)=\cos x.
Now, as f(x)=sinxf\left( x \right)=\sin x so, we can write its differentiation with respect to xx from the formula written in the second point. Then,
f(x)=sinx f(x)=d(sinx)dx f(x)=cosx....................(1) \begin{aligned} & f\left( x \right)=\sin x \\\ & \Rightarrow {f}'\left( x \right)=\dfrac{d\left( \sin x \right)}{dx} \\\ & \Rightarrow {f}'\left( x \right)=\cos x....................\left( 1 \right) \\\ \end{aligned}
Now, as g(x)=cosxg\left( x \right)=\cos x so, we can write its differentiation with respect to xx from the formula written in the above points. Then,
g(x)=cosx g(x)=d(cosx)dx g(x)=sinx............(2) \begin{aligned} & g\left( x \right)=\cos x \\\ & \Rightarrow {g}'\left( x \right)=\dfrac{d\left( \cos x \right)}{dx} \\\ & \Rightarrow {g}'\left( x \right)=-\sin x............\left( 2 \right) \\\ \end{aligned}
Now, as per our assumption y=sinxcosx=f(x)g(x)y=\sin x\cos x=f\left( x \right)\cdot g\left( x \right) so, we can use the product rule of differential calculus to write the derivative of y=sinxcosxy=\sin x\cos x with respect to xx . Then,
y=sinxcosx=f(x)g(x) dydx=d(sinxcosx)dx=d(f(x)g(x))dx dydx=d(sinxcosx)dx=f(x)g(x)+f(x)g(x) \begin{aligned} & y=\sin x\cos x=f\left( x \right)\cdot g\left( x \right) \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \sin x\cos x \right)}{dx}=\dfrac{d\left( f\left( x \right)\cdot g\left( x \right) \right)}{dx} \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \sin x\cos x \right)}{dx}={f}'\left( x \right)\cdot g\left( x \right)+f\left( x \right)\cdot {g}'\left( x \right) \\\ \end{aligned}
Now, substituting f(x)=cosx{f}'\left( x \right)=\cos x from equation (1) and g(x)=sinx{g}'\left( x \right)=-\sin x from equation (2) in the above equation. Then,
dydx=d(sinxcosx)dx=f(x)g(x)+f(x)g(x) dydx=d(sinxcosx)dx=cosxg(x)sinxf(x) \begin{aligned} & \dfrac{dy}{dx}=\dfrac{d\left( \sin x\cos x \right)}{dx}={f}'\left( x \right)\cdot g\left( x \right)+f\left( x \right)\cdot {g}'\left( x \right) \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \sin x\cos x \right)}{dx}=\cos x\cdot g\left( x \right)-\sin x\cdot f\left( x \right) \\\ \end{aligned}
Now, as per our assumption f(x)=sinxf\left( x \right)=\sin x and g(x)=cosxg\left( x \right)=\cos x . Then,
dydx=d(sinxcosx)dx=cosxg(x)sinxf(x) dydx=d(sinxcosx)dx=cosxcosxsinxsinx dydx=d(sinxcosx)dx=cos2xsin2x \begin{aligned} & \dfrac{dy}{dx}=\dfrac{d\left( \sin x\cos x \right)}{dx}=\cos x\cdot g\left( x \right)-\sin x\cdot f\left( x \right) \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \sin x\cos x \right)}{dx}=\cos x\cdot \cos x-\sin x\cdot \sin x \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \sin x\cos x \right)}{dx}={{\cos }^{2}}x-{{\sin }^{2}}x \\\ \end{aligned}
Now, as we will use the formula cos2θ=cos2θsin2θ\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta in the above equation. Then,
dydx=d(sinxcosx)dx=cos2xsin2x dydx=d(sinxcosx)dx=cos2x \begin{aligned} & \dfrac{dy}{dx}=\dfrac{d\left( \sin x\cos x \right)}{dx}={{\cos }^{2}}x-{{\sin }^{2}}x \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \sin x\cos x \right)}{dx}=\cos 2x \\\ \end{aligned}
Thus, dydx=cos2x\dfrac{dy}{dx}=\cos 2x will be the derivative of a given function with respect to xx

Note: Here, the student should know how to apply the product rule of differentiation to find the differentiation of functions of the form y=f(x)g(x)y=f\left( x \right)\cdot g\left( x \right) . Moreover, we could also write y=sinxcosx=sin2x2y=\sin x\cos x=\dfrac{\sin 2x}{2} and after that, we will find the derivative of the function y=sin2x2y=\dfrac{\sin 2x}{2} with respect to xx ,i.e. dydx=d(sin2x2)dx=12d(sin2x)dx\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{\sin 2x}{2} \right)}{dx}=\dfrac{1}{2}\dfrac{d\left( \sin 2x \right)}{dx} . Then, we can write 12d(sin2x)dx=cos2x\dfrac{1}{2}\dfrac{d\left( \sin 2x \right)}{dx}=\cos 2x to write the final answer correctly.