Question
Mathematics Question on Limits and derivations
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): (x+secx)(x−tanx)
Let f(x) = (x+secx) (x−tan x)
By product rule,
f'(x) = (x + secx)dxd(x−tanx)+(x−tanx)dxd(x + sec x)
=(x+ secx) [dxd(x)-dxdtan x]+(x-tan.x) [dxd(x)+dxdsec x]
=(x + secx)[1- dxd tan x]+(x- tan x)[1 + dxd sec x] ...(i)
Let f1 (x)= tan x,f2(x) = secx
Accordingly, f1(x+h) = tan(x+h) and f2 (x+h) = sec(x+h)
f′1(x) = limh→0(hf1(x+h)−f1(x))
= limh→0 (htan(x+h)−tanx)
= limh→0 h1[cosxsin(x+h)−cosxsinx]
= limh→0 h1[ cos(x+h)cosxsinh]
=(limh→0 hsinh). (limh→0 cos(x+h)1 cos x)
= 1\times$$\frac{1}{cos^2x} = sec2x
⇒dxd tan x = sec2x ...(ii)
f′2(x) = limh→0(hf2(x+h)−f2(x))
= limh→0(hsec(x+h)−secx)
= limh→0 h1[ cos(x+h)1−cosx1]
= limh→0 h1[cos(x+4)cosxcosx−cos(x+4)]
=cosx1 limh→0 h1[[sin(22x+h) {2hsin2h}]
secx. tanx ...(iii)
From (i), (ii), and (iii), we obtain
f′(x) = (x+sec x)(1-sec2x) + (x-tan x)(1+sec x tan x)