Solveeit Logo

Question

Mathematics Question on Limits and derivations

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): (x+secx)(xtanx)(x+sec\,x)(x-tan\,x)

Answer

Let f(x) = (x+secx) (x−tan x)
By product rule,
f'(x) = (x + secx)ddx\frac{d}{dx}(x−tanx)+(x−tanx)ddx\frac{d}{dx}(x + sec x)
=(x+ secx) [ddx\frac{d}{dx}(x)-ddx\frac{d}{dx}tan x]+(x-tan.x) [ddx\frac{d}{dx}(x)+ddx\frac{d}{dx}sec x]
=(x + secx)[1- ddx\frac{d}{dx} tan x]+(x- tan x)[1 + ddx\frac{d}{dx} sec x] ...(i)
Let f1f_1 (x)= tan x,f2f_2(x) = secx
Accordingly, f1(x+h) = tan(x+h) and f2 (x+h) = sec(x+h)
ff'1(x) = limh0\lim_{h\rightarrow 0}(f1(x+h)f1(x)h\frac{f_1(x+h)-f_1(x)}{h})
= limh0\lim_{h\rightarrow 0} (tan(x+h)tanxh\frac{tan(x+h)-tan\,x}{h})
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[sin(x+h)cosxsinxcosx\frac{sin(x+h)}{cos\,x}-\frac{sin\,x}{cos\,x}]
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[ sinhcos(x+h)cosx\frac{sin\,h}{cos(x+h)cos\,x}]
=(limh0\lim_{h\rightarrow 0} sinhh\frac{sin\,h}{h}). (limh0\lim_{h\rightarrow 0} 1cos(x+h)\frac{1}{cos(x+h)} cos x)
= 1\times$$\frac{1}{cos^2x} = sec2x
ddx\frac{d}{dx} tan x = sec2x ...(ii)
ff'2(x) = limh0\lim_{h\rightarrow 0}(f2(x+h)f2(x)h\frac{f_2(x+h)-f_2(x)}{h})
= limh0\lim_{h\rightarrow 0}(sec(x+h)secxh\frac{sec(x+h)-sec\,x}{h})
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[ 1cos(x+h)1cosx\frac{1}{cos(x+h)}-\frac{1}{cos\,x}]
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[cosxcos(x+4)cos(x+4)cosx\frac{cos\,x-cos(x+4)}{cos(x+4)cos\,x}]
=1cosx\frac{1}{cos\,x} limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[[sin(2x+h2\frac{2x+h}{2}) {sinh2h2\frac{sin\frac{h}{2}}{\frac{h}{2}}}]
secx. tanx ...(iii)
From (i), (ii), and (iii), we obtain
ff'(x) = (x+sec x)(1-sec2x) + (x-tan x)(1+sec x tan x)