Question
Mathematics Question on Limits and derivations
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): 1+tanxx
Let f(x)=1+tanxx
f'(x)=(1+tanx)dxd(x)-x\frac{d}{dx}$$\frac{(1+tan\,x)}{(1+tan\,x)^2}
f'(x)=(1+tanx) -x.\frac{d}{dx}$$\frac{(1+tan\,x)}{(1+tan\,x)^2} ..(i)
Let g(x)=1+tan x. Accordingly, g(x+h)=1+tan (x + h).
By first principle
g′(x)=limh→0hg(x+h)−g(x)
=limh→0 [h1+tan(x+h)−1−tanx]
=limh→0 h1[cos(x+h)sin(x+h)−cosxsinx]
=limh→0 h1[cos(x+h)cosxsin(x+h)cosx−sinxcos(x+h)]
=limh→0 h1[cos(x+h)cosxsin(x+h−x)]
=limh→0 h1[cos(x+h)cosxsinh]
=(limh→0 hsinh).(\lim_{h\rightarrow 0}$$\frac{1}{cos(x+h)cos\,x}
=1xcos2x1 = sec2x
⇒(1+tanx) = sec2x ...(ii)
From (i) and (ii), we obtain
f′(x)=(1+tanx)21+tanx−xsec2x