Solveeit Logo

Question

Mathematics Question on Limits and derivations

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): x2cos(π4)sinx\frac{x^2cos(\frac{\pi}{4})}{sin\,x}

Answer

Let f(x)= x2cos(π4)sinx\frac{x^2cos(\frac{\pi}{4})}{sin\,x}
By the quotient rule,
f'(x)= cos(π4)cos(\frac{\pi}{4}). ddx\frac{d}{dx}[sinxddx(x2)x2ddx(sinx)sin2x\frac{sin\,x\frac{d}{dx}(x^2)-x^2\frac{d}{dx}(sin\,x)}{sin^2x}]
=cos(π4)cos(\frac{\pi}{4}).[sinx.2xx2cosxsin2x\frac{sin\,x.2x-x^2cosx}{sin^2x}]
=xcosπ4\frac{\pi}{4} . [2sinxxcosx]sin2x\frac{[2sin\,x-x\,cosx]}{sin^2x}