Solveeit Logo

Question

Mathematics Question on Limits and derivations

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): (4x+5sinx)(3x+7cosx)

Answer

Let f(x)= 4x+5sinx3x+7cosx\frac{4x+5sin\,x}{3x+7cos\,x}
By the quotient rule,
f'(x)= (3x+7cos x)ddx\frac{d}{dx}(4x+5sin x)-(4x+5sin x)ddx\frac{d}{dx}(3x+7 cos x)/(3x+7 cos x)2
f'(x)=(3x+7 cos x)[4ddx\frac{d}{dx}(x)+5ddx\frac{d}{dx}(sin x)] -(4x+5sin x)[3ddx\frac{d}{dx} x + 7 ddx\frac{d}{dx}cosx]
=(3x+7cosx)(4+5cosx)(4x+5sinx)(37sinx)(3x+7cosx)2\frac{(3x+7 cos x)(4+5 cos x)-(4x+5sin x)(3-7 sin x)}{(3x+7 cos x)^2}
=15xcosx+28cosx+28xsinx15sinx+35(cos2x+sin2x)(3x+7cosx)2\frac{15x\,cos\,x+28cos\,x+28x\,sinx-15sin\,x+35(cos^2x+sin^2x)}{(3x+7cos\,x)^2}
=35+15xcosx+28cosx+28sinx15sinx(3x+7cosx)2\frac{35+15x\,cos\,x+28cos\,x+28sin\,x-15sin\,x}{(3x+7cos\,x)^2}