Question
Mathematics Question on Limits and derivations
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): (4x+5sinx)(3x+7cosx)
Let f′(x)=(x+cos x) (x-tan x)
By product rule,
f'(x) = (x + cos x)dxd(x - tan x)+(x - tan x) dxd(x + cos x)
= (x + cos x) [ dxd(x) - dxd(tan x)] + (x-tan x)(1— sin x)
= (x + cos x)[1-dxdtan x]+(x-tan x) (1-sin x) ...(i)
Let g(x) = tan x. Accordingly, g(x+h) = tan(x+h)
By first principle.
g'(x)= limh→0 hg(x+h)−g(x)
= \lim_{h\rightarrow 0}$$\frac{tan(x+h)-tan\,x}{h}
= limh→0 h1[cos(x+h)sin(x+h)−sinxcosxh]
= limh→0 h1 [cos(x+h)cosxsin(x+h)cosx−sinxcos(x+h)]
=\frac{1}{cos\,x}$$\lim_{h\rightarrow 0} h1[cos(x+h)sin(x+h−x)]
=\frac{1}{cos\,x}$$\lim_{h\rightarrow 0} h1[cos(x+h)sinh]
=cosx1 (limh→0 sinhh).(limh→0 cos(x+h)1)
=cosx1.1.cosx1(x+0)
=cos2x1 = sec2x ...(ii)
Therefore, from (i) and (ii), we obtain
f′(x)=(x+cosx)(1-sec2x)+(x-tan x) (1-sin x)
=(x+cos.x) (-tan2x)+(x−tan x)(1−sin x)
=−tan2x(x+cos x)+(x−tan x)(1−sin x)