Solveeit Logo

Question

Mathematics Question on Limits and derivations

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): (4x+5sinx)(3x+7cosx)

Answer

Let ff'(x)=(x+cos x) (x-tan x)
By product rule,
f'(x) = (x + cos x)ddx\frac{d}{dx}(x - tan x)+(x - tan x) ddx\frac{d}{dx}(x + cos x)
= (x + cos x) [ ddx\frac{d}{dx}(x) - ddx\frac{d}{dx}(tan x)] + (x-tan x)(1— sin x)
= (x + cos x)[1-ddx\frac{d}{dx}tan x]+(x-tan x) (1-sin x) ...(i)
Let g(x) = tan x. Accordingly, g(x+h) = tan(x+h)
By first principle.
g'(x)= limh0\lim_{h\rightarrow 0} g(x+h)g(x)h\frac{g(x+h)-g(x)}{h}
= \lim_{h\rightarrow 0}$$\frac{tan(x+h)-tan\,x}{h}
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[sin(x+h)cos(x+h)sinxhcosx\frac{sin(x+h)}{cos(x+h)}-sin\,x\frac{h}{cos\,x}]
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h} [sin(x+h)cosxsinxcos(x+h)cos(x+h)cosx\frac{sin(x+h)cos\,x-sin\,xcos(x+h)}{cos(x+h)cos\,x}]
=\frac{1}{cos\,x}$$\lim_{h\rightarrow 0} 1h\frac{1}{h}[sin(x+hx)cos(x+h)\frac{sin(x+h-x)}{cos(x+h)}]
=\frac{1}{cos\,x}$$\lim_{h\rightarrow 0} 1h\frac{1}{h}[sinhcos(x+h)\frac{sin\,h}{cos(x+h)}]
=1cosx\frac{1}{cos\,x} (limh0\lim_{h\rightarrow 0} sinhhsin\frac{h}{h}).(limh0\lim_{h\rightarrow 0} 1cos(x+h)\frac{1}{cos(x+h)})
=1cosx\frac{1}{cos\,x}.1.1cosx\frac{1}{cos\,x}(x+0)
=1cos2x\frac{1}{cos^2x} = sec2x ...(ii)
Therefore, from (i) and (ii), we obtain
ff'(x)=(x+cosx)(1-sec2x)+(x-tan x) (1-sin x)
=(x+cos.x) (-tan2x)+(x−tan x)(1−sin x)
=−tan2x(x+cos x)+(x−tan x)(1−sin x)