Solveeit Logo

Question

Mathematics Question on Limits and derivations

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): sin(x+a)cosa\frac{sin(x+a)}{cos\,a}

Answer

Let f(x)= sin(x+a)cosa\frac{sin(x+a)}{cos\,a}
By the quotient rule,
f'(x)=cosxddx[sin(x+a)]sin(x+a)ddxcosxcos2x\frac{cos\,x\frac{d}{dx}[sin(x+a)]-sin(x+a)\frac{d}{dx}cos\,x}{cos^2x}
f'(x)=cosxddx[sin(x+a)]sin(x+a)(sinx)cos2x\frac{cos\,x\frac{d}{dx}[sin(x+a)]-sin(x+a)(-sin\,x)}{cos^2x} ...(i)
Let g(x)=sin(x+a). Accordingly, g(x+h)=sin(x+h+a)
By first principle,
g'(x)= limh0\lim_{h\rightarrow 0} g(x+h)g(x)h\frac{g(x+h)-g(x)}{h}
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h} [sin(x+h+a) - sin(x+a)]
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[ 2cos((2x+2h+h)2\frac{(2x+2h+h)}{2}) sin(h2\frac{h}{2})]
= limh0\lim_{h\rightarrow 0} [cos((2x+2h+h)2\frac{(2x+2h+h)}{2})sin(h2)(h2)\frac{sin(\frac{h}{2})}{(\frac{h}{2})}]
=cos(2x+2a)2\frac{(2x+2a)}{2} ×\times1
= cos(x+a) ...(ii)
From (i) and (ii), we obtain
f'(x)= cosx.cos(x+a)+sinxsin(x+a)cos2x\frac{cos\,x.cos(x+a)+sin\,xsin(x+a)}{cos^2x}
=cos(x+ax)cos2x\frac{cos(x+a-x)}{cos^2x}
=cosacos2x\frac{cos\,a}{cos^2\,x}