Solveeit Logo

Question

Mathematics Question on Limits and derivations

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): a+bsinxc+dcosx\frac{a+b\,sin\,x}{c+d\,cos\,x}

Answer

Let f (x)= a+bsinxc+dcosx\frac{a+b\,sin\,x}{c+d\,cos\,x}
By the quotient rule,
f'(x)= (c+dcosx)ddx(a+bsinx)(a+bsinx)ddx(c+dcosx)(c+dcosx)2\frac{(c+d cos x)\frac{d}{dx}(a+bsin x)-(a+bsin x)\frac{d}{dx}(c+d cos x)}{(c+d cos x)^2}
=(c+dcosx)(bcosx)(a+bsinx)(dsinx)(c+dcosx)2\frac{(c+d cos x)(b\,cos\,x)-(a+bsin x)(-d\,sin\,x)}{(c+d cos x)^2}
=cbcosx+bdcos2x+adsinx+bdsin2x(c+dcosx)2\frac{cb\,cos\,x+bd\,cos^2\,x+ad\,sin\,x+bd\,sin^2\,x}{(c+d cos x)^2}
=bccosx+adsinx+bd(cos2x+sin2x)(c+dcosx)2\frac{bc\,cos\,x+ad\,sin\,x+bd(cos^2x+sin^2x)}{(c+d cos x)^2}
=bccosx+adsinx+bd(c+dcosx)2\frac{bc\,cos\,x+ad\,sin\,x+bd}{(c+d cos x)^2}