Solveeit Logo

Question

Mathematics Question on Limits and derivations

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): secx1secx+1\frac{sec\,x-1}{sec\,x+1}

Answer

Let f(x)=secx1secx+1\frac{sec\,x-1}{sec\,x+1}
f(x)= 1cosx11cosx+1\frac{\frac{1}{cos\,x-1}}{\frac{1}{cos\,x+1}} = 1cosx1+cosx\frac{1-cos\,x}{1+cos\,x}
By quotient rule,
f'(x) = (1+cosx) ddx\frac{d}{dx}(1-cosx) - (1-cosx) ddx\frac{d}{dx} 1cosx(1+cosx)2\frac{1-cos\,x}{(1+cos\,x)^2}
=(1+cosx)(sinx)(1cosx)(sinx)(1+cosx)2\frac{(1+cos\,x)(sin\,x)-(1-cos\,x)(-sin\,x)}{(1+cos\,x)^2}
= 2sinx(1+cosx)2\frac{2sin\,x}{(1+cos\,x)^2}
=2sinx(1+1secx)2\frac{2sin\,x}{(1+\frac{1}{sec\,x})^2} = 2sinx(secx+1)2sec2x\frac{2sin\,x}{\frac{(sec\,x+1)^2}{sec^2x}}
= 2sinxsec2x(secx+1)2\frac{2sin\,xsec^2x}{(sec\,x+1)^2}
=2secxtanx(secx+1)2\frac{2sec\,x\,tan\,x}{(sec\,x+1)^2}