Solveeit Logo

Question

Mathematics Question on Limits and derivations

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): sinx+cosxsinxcosx\frac{sin\,x+cos\,x}{sin\,x-cos\,x}

Answer

Let f(x)=sinx+cosxsinxcosx\frac{sin\,x+cos\,x}{sin\,x-cos\,x}
By the quotient rule,
f'(x)= (sinxcosx{sin\,x-cos\,x}) ddx\frac{d}{dx} (sinx+cosx{sin\,x+cos\,x})–(sinx+cosx{sin\,x+cos\,x}) \frac{d}{dx}$$\frac{({sin\,x-cos\,x})}{({sin\,x-cos\,x})^2}
=(sinxcosx)(sinxcosx)(sinx+cosx)(sinx+cosx)(sinxcosx)2\frac{({sin\,x-cos\,x})({sin\,x-cos\,x})-({sin\,x+cos\,x})({sin\,x+cos\,x})}{({sin\,x-cos\,x})^2}
=(sinxcosx)2(sinx+cosx)2(sinxcosx)2-\frac{({sin\,x-cos\,x})^2-({sin\,x+cos\,x})^2}{({sin\,x-cos\,x})^2}
=[sin2x+cos2x2sinxcos.x+sin2x+cos2x+2sinxcosx](sinxcosx)2-\frac{[sin^2x+cos^2x–2sin xcos.x+sin^2x+cos^2x+2sinxcosx]}{({sin\,x-cos\,x})^2}
=[1+1](sinxcosx)2\frac{-[1+1]}{({sin\,x-cos\,x})^2}
=2(sinxcosx)2\frac{-2}{({sin\,x-cos\,x})^2}