Solveeit Logo

Question

Mathematics Question on Limits and derivations

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): cosx1+sinx\frac{cos\,x}{1+sin\,x}

Answer

Let f(x)=cosx1+sinx\frac{cos\,x}{1+sin\,x}
By quotient rule,
f'(x) = limh0\lim_{h\rightarrow 0} f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}
=(1+sinx)ddx(cosx)ddx(1+sinx)(1+sinx)2\frac{(1+sin\,x)\frac{d}{dx}(cos\,x)\frac{d}{dx}(1+sin\,x)}{(1+sin\,x)^2}
=(1+sinx)(sinx)(cosx)(cosx)(1+sinx)2\frac{(1+sin\,x)(-sin\,x)-(cos\,x)(cos\,x)}{(1+sin\,x)^2}
=sinxsin2xcos2x(1+sinx)2\frac{-sin\,x-sin^2x-cos^2x}{(1+sin\,x)^2}
=sinx(sin2x+cos2x)(1+sinx)2\frac{sin\,x-(sin^2x+cos^2x)}{(1+sin\,x)^2}
=sinx1(1+sinx)2\frac{-sin\,x-1}{(1+sin\,x)^2}
=(1+sinx)(1+sinx)2\frac{-(1+sin\,x)}{(1+sin\,x)^2}
=1(1+sinx)-\frac{1}{(1+sin\,x)}