Solveeit Logo

Question

Mathematics Question on Limits and derivations

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): cosec x cot x

Answer

Let f(x) =cosecx cotx
By Leibnitz product rule,
f'(x)=cosec x(cotx)'+cot x(cosec x)' ...(1)
Let f1(x) = cotx. Accordingly, f1(x+h) = cot(x+h)
By first principle,
f'1(x) = limh0\lim_{h\rightarrow 0} f2(x+h) − f1(x)/h
= limh0\lim_{h\rightarrow 0} cot(x+h) - cotxh\frac{cot\,x}{h}
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}( cos(x+h)sin(x+h)cosxsinx\frac{cos(x+h)}{sin(x+h)}-\frac{cos\,x}{sin\,x})
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[sinxcos(x+h)cosxsin(x+h)sinxsin(x+h)\frac{sin\,xcos(x+h)-cos\,xsin(x+h)}{sin\,xsin(x+h)}]
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[sin(xxh)sinxsin(x+h)\frac{sin(x-x-h)}{sin\,xsin(x+h)}]
= 1sinx\frac{1}{sin\,x}. \lim_{h\rightarrow 0}$$\frac{1}{h}[ sin(h)sin(x+h\frac{sin(-h)}{sin(x+h}]
=-1sinx\frac{1}{sin\,x}.1.(1sin\frac{1}{sin}(x+0))
=1sin2x-\frac{1}{sin^2x}
=-cosec2x
∴(cotx)' = -cosec2x ...(2)
Now, let f(x) = cosec x. Accordingly, f2(x+h) = cosec(x+h)
By first principle,
f'2(x) = limh0\lim_{h\rightarrow 0} f2(x+h)f2(x)h\frac{f_2(x+h)-f_2(x)}{h}
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[cosec(x+h) - cosecx]
=limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[2sin(x+h)1sinx\frac{2}{sin(x+h)}-\frac{1}{sin\,x}]
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[1sinx\frac{1}{sin\,x} - sin(x+h)sinxsin(x+h)\frac{sin(x+h)}{sin\,xsin(x+h)}]
=1sinx\frac{1}{sin\,x} limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[2cos (x+x+h2\frac{x+x+h}{2}) sin(xxh2\frac{x-x-h}{2})]
=1sinx\frac{1}{sin\,x} limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[2cos (2x+h2\frac{2x+h}{2}) sin(h2\frac{-h}{2})]
=1sinx\frac{1}{sin\,x} limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[sinh2h2\frac{-sin\frac{h}{2}}{\frac{h}{2}}.cos(2x+h2\frac{2x+h}{2})]
=-1sinx\frac{1}{sin\,x} limh0\lim_{h\rightarrow 0} sinh2h2\frac{sin\frac{h}{2}}{\frac{h}{2}} . limh0\lim_{h\rightarrow 0} cos2x+h2sin(x+h)\frac{cos\frac{2x+h}{2}}{sin(x+h)}
=-1sinx\frac{1}{sin\,x}.1.1.cos(2x+02)sin(x+0)\frac{cos(\frac{2x+0}{2})}{sin(x+0)}=1sinx.cosxsinx-\frac{1}{sin\,x}.\frac{cos\,x}{sin\,x}
=-cosecx.cotx
∴(cosecx)' = -cosecx cotx ...(3)
From (1), (2), and (3), we obtain
f'(x) = cosecx (-cosec2x) + cotx(-cosecx cotx)
=-cosec3x-cot2xcosecx