Question
Mathematics Question on Limits and derivations
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): cosec x cot x
Let f(x) =cosecx cotx
By Leibnitz product rule,
f'(x)=cosec x(cotx)'+cot x(cosec x)' ...(1)
Let f1(x) = cotx. Accordingly, f1(x+h) = cot(x+h)
By first principle,
f'1(x) = limh→0 f2(x+h) − f1(x)/h
= limh→0 cot(x+h) - hcotx
= limh→0 h1( sin(x+h)cos(x+h)−sinxcosx)
= limh→0 h1[sinxsin(x+h)sinxcos(x+h)−cosxsin(x+h)]
= limh→0 h1[sinxsin(x+h)sin(x−x−h)]
= sinx1. \lim_{h\rightarrow 0}$$\frac{1}{h}[ sin(x+hsin(−h)]
=-sinx1.1.(sin1(x+0))
=−sin2x1
=-cosec2x
∴(cotx)' = -cosec2x ...(2)
Now, let f(x) = cosec x. Accordingly, f2(x+h) = cosec(x+h)
By first principle,
f'2(x) = limh→0 hf2(x+h)−f2(x)
= limh→0 h1[cosec(x+h) - cosecx]
=limh→0 h1[sin(x+h)2−sinx1]
= limh→0 h1[sinx1 - sinxsin(x+h)sin(x+h)]
=sinx1 limh→0 h1[2cos (2x+x+h) sin(2x−x−h)]
=sinx1 limh→0 h1[2cos (22x+h) sin(2−h)]
=sinx1 limh→0 h1[2h−sin2h.cos(22x+h)]
=-sinx1 limh→0 2hsin2h . limh→0 sin(x+h)cos22x+h
=-sinx1.1.1.sin(x+0)cos(22x+0)=−sinx1.sinxcosx
=-cosecx.cotx
∴(cosecx)' = -cosecx cotx ...(3)
From (1), (2), and (3), we obtain
f'(x) = cosecx (-cosec2x) + cotx(-cosecx cotx)
=-cosec3x-cot2xcosecx