Solveeit Logo

Question

Mathematics Question on Limits and derivations

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): sin (x + a)

Answer

Let f(x)=sin(x+a)
f(x+h)=sin(x+h+a)
By first principle,
f'(x) = \lim_{h\rightarrow 0}$$\frac{f(x+h)-f(x)}{h}
= \lim_{h\rightarrow 0}$$\frac{sin(x+h+a)-sin(x+a)}{h}
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[2cos(x+h+a+x+a2\frac{x+h+a+x+a}{2}) sin(x+h+axa2\frac{x+h+a-x-a}{2})]
= limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[2cos(2x+2a+h2\frac{2x+2a+h}{2}) sin(h2\frac{h}{2})]
= limh0\lim_{h\rightarrow 0} [cos(2x+2a+h2\frac{2x+2a+h}{2}) sinh2h2\frac{sin\frac{h}{2}}{\frac{h}{2}}]
= limh0\lim_{h\rightarrow 0} cos(2x+2a+h2\frac{2x+2a+h}{2}) limh20\lim_{\frac{h}{2}\rightarrow 0} {sinh2h2\frac{sin\frac{h}{2}}{\frac{h}{2}}} [ As h\rightarrow0\Rightarrow \frac{h}{2}$$\rightarrow0]
=cos(2x+2a2\frac{2x+2a}{2}) x1 [lim x\rightarrow0 sinxx\frac{sin\,x}{x} =1]
=cos(x+a)