Solveeit Logo

Question

Mathematics Question on Limits and derivations

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): (ax +b)n (cx + d)m

Answer

Let f(x) = (ax +b)n (cx + d)m.
By Leibnitz product rule,
f'(x) = (ax+b)nddx\frac{d}{dx} (cx + d)m + (cx +d)m ddx\frac{d}{dx}(ax+b)n …...(1)
Now, let f1(x) = (cx+d)m
f1(x+h) = (cx+ch+d)m
f'(x) = limh0\lim_{h\rightarrow 0} f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}
= limh0\lim_{h\rightarrow 0} (cx+ch+d)m(cx+dx)mh\frac{(cx+ch+d)^m-(cx+dx)^m}{h}
=(cx+dx)m limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[(1+ chcx+1\frac{ch}{cx+1})m -1]
=(cx+dx)mlimh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[(1+mch(cx+d)1+\frac{mch}{(cx+d)} + m(m+1)2\frac{m(m+1)}{2} c2h22(cx+d)2\frac{c^2h^2}{2(cx+d)^2} + ...) -1]
=(cx+dx)mlimh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[1+mch(cx+d)1+\frac{mch}{(cx+d)} + m(m-1)c2h22(cx+d)2\frac{c^2h^2}{2(cx+d)^2} + ....(Terms containing higher degrees of h)]
=(cx+dx)m limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[mc(cx+d)\frac{mc}{(cx+d)} + m(m1)c2h22(cx+d)2\frac{m(m-1)c^2h^2}{2(cx+d)^2} + ...]
=(cx+dx)m [mc(cx+d)\frac{mc}{(cx+d)}+0]
= mc(cx+d)m(cx+d)\frac{m}{(cx+d)}
= mc(cx+d)m-1 ....(2)
Similarly, ddx\frac{d}{dx}(ax+b)n = na (ax+b) n-1 .....(3)
Therefore, From (1), (2), and (3), we obtain
f'(x) = (ax+b)n {mc (cx+d) m-1} + (cx+d)m {na(ax+b) n-1}
= (ax+b)n-1 (cx+d)m-1[mc(ax+b) + na(cx+d)]