Question
Mathematics Question on Limits and derivations
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): (ax +b)n
Answer
Let f(x) = (ax +b)n. Accordingly, f(x+h) = {a(x+h) + b}n = (ax + ah +b )n
by first principle,
f'(x) = limh→0 hf(x+h)−f(x)
=limh→0 (ax+ah+b)n -(ax+b)n
=limh→0 h(ax+b)n(1+ax+bah)n−(ax+b)n
=(ax+b)n \lim_{h\rightarrow 0}$$\frac{1}{n}[{ 1+n(ax+bah) +2n(n−1)(ax+bah)2 + .....}-1](Using binomial theorem)
=(ax+b)n limh→0 h1[n(ax+bah) + n(n-1)(ax+b)2a2h2 + .....(Terms containing higher degrees of h)]
=(ax+b)nlimh→0 h1[ ax+bna+ n(n-1)(ax+b)2a2h2 + ..]
=(ax+b)n [(ax+b)na + 0]
=na(ax+b)(ax+b)n
=na (ax+b)n-1