Solveeit Logo

Question

Mathematics Question on Limits and derivations

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): (ax +b)n

Answer

Let f(x) = (ax +b)n. Accordingly, f(x+h) = {a(x+h) + b}n = (ax + ah +b )n
by first principle,
f'(x) = limh0\lim_{h\rightarrow 0} f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}
=limh0\lim_{h\rightarrow 0} (ax+ah+b)n -(ax+b)n
=limh0\lim_{h\rightarrow 0} (ax+b)n(1+ahax+b)n(ax+b)nh\frac{(ax+b)^n(1+\frac{ah}{ax+b})^n-(ax+b)^n}{h}
=(ax+b)n \lim_{h\rightarrow 0}$$\frac{1}{n}[{ 1+n(ahax+b\frac{ah}{ax+b}) +n(n1)2\frac{n(n-1)}{2}(ahax+b\frac{ah}{ax+b})2 + .....}-1](Using binomial theorem)
=(ax+b)n limh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[n(ahax+b\frac{ah}{ax+b}) + n(n-1)a2h2(ax+b)2\frac{a^2h^2}{(ax+b)^2} + .....(Terms containing higher degrees of h)]
=(ax+b)nlimh0\lim_{h\rightarrow 0} 1h\frac{1}{h}[ naax+b\frac{na}{ax+b}+ n(n-1)a2h2(ax+b)2\frac{a^2h^2}{(ax+b)^2} + ..]
=(ax+b)n [na(ax+b)\frac{na}{(ax+b)} + 0]
=na(ax+b)n(ax+b)\frac{(ax+b)^n}{(ax+b)}
=na (ax+b)n-1