Question
Mathematics Question on Derivatives
Find the derivative of the following functions from first principle.
(i) x3 − 27 (ii) ( x −1)( x- 2 )
(iii) x21 (iv) x−1x+1
(i) Let f(x) = x3 - 27. Accordingly, from the first principle,
f'(x)= limh→0 hf(x+h)−f(x)
= limh→0 hx3+h3+3x2h+3xh2−x3
= limh→0 hh3+3x2h+3xh2
= limh→0(h2+3x2+3xh)
=0+3x2+0=3x2.
(ii) Let f(x) = (x - 1) (x - 2). Accordingly, from the first principle,
f'(x) = \lim_{h\rightarrow 0}$$\frac{f(x+h)-f(x)}{h}
= limh→0 h(x+h−1)(x+h−2)−(x−1)(x−2)
= \lim_{h\rightarrow 0}$$\frac{(hx+hx+h^2-2h-h)}{h}
= limh→0 2hx+h2−3h
= limh→0 (2x+h-3)
=(2x+0-3)
=2x-3
(iii) Let f(x)=x21 Accordingly, from the first principle,
f'(x)= limh→0 hf(x+h)−f(x)
= limh→0 h(x+h)21−x21
= limh→0 h1 [x2(x+h)2x2−(x+h)2 ]
= limh→0 h1 [x2(x+h)2−h2−2x ]
= limh→0 [x2(x+h)2−h−2hx ]
= x2(x+0)20−2x =−x32
(iv) Let f(x)= x−1x+1. Accordingly, from the first principle,
f'(x)= limh→0 hf(x+h)−f(x)
=\lim_{h\rightarrow 0}$$\frac{(\frac{x+h+1}{x+h-1}-\frac{x+1}{x-1})}{h}
= \lim_{h\rightarrow 0}$$\frac{1}{h} [(x−1)(x+h−1)−2h]
= limh→0 [(x−1)(x+h−1)−2]
= (x−1)(x−1)−2= (x−1)2−2