Question
Mathematics Question on Derivatives
Find the derivative of the following functions:
(i) sin x cos x
(ii) sec x
(iii) 5sec x+4cos x
(iv) cosec x
(v) 3cot x+5cosec x
(vi) 5sin x-6cos x+7
(vii) 2tan x-7sec x
(i) Letf (x) = sin x cos x. Accordingly, from the first principle,
f'(x)= limh→0 hf(x+h)−f(x)
= limh→0 hsin(x+h)cos(x+h)−sinxcosx
= limh→0 2h1[sin 2(x+h)-sin 2x]
= limh→0 h1[ cos24x+2h sin 22h]
= limh→0 h1cos(2x+h) limh→0 hsinh
= cos(2x+0).1
= cos 2.x
(ii) Letf (x) = sec x. Accordingly, from the first principle,
f'(x)= \lim_{h\rightarrow 0}$$\frac{f(x+h)-f(x)}{h}
= limh→0 hsec(x+h)−sec(x)
= limh→0 1h[cos(x+h)1−cosx1]
= limh→0 h11[ cosxcos(x+h)cosx−cos(x+h)]
=cosx1 limh→0[-2sin (x+x+2h) sin(x-x-2h) / cos(x+h)]
=cosx1 limh→0[cos(x+h)−2sin(22x+h)sin(2h)]
=\frac{1}{cos\,x}$$\lim_{h\rightarrow 0}[-2sin (22x+h) sin(2h)cos(x+h)]
=cosx1 lim2h→0 2hsin2h.limh→0 cos(x+h)sin(22x+h)
=cosx1 .1.cosxsinx
= sec x tan x
(iii) Letf (x) = 5 sec x + 4 cos x. Accordingly, from the first principle,
f'(x)= \lim_{h\rightarrow 0}$$\frac{f(x+h)-f(x)}{h}
= limh→0 h5sec(x+h)+4cos(x+h)−[5secx+cosx]
= 5\lim_{h\rightarrow 0}$$\frac{sec(x+h)-sec(x)}{h} +4 \lim_{h\rightarrow 0}$$\frac{cos(x+h)-cos(x)}{h}
= 5limh→0 h1 [cosxcos(x+h)cosx−cos(x+h)] +4limh→0 [cosxcosh–sinxsinh −cosx]
=\frac{5}{cosx}$$\lim_{h\rightarrow 0}$$[\frac{sin\frac{2x+h}{2}.sin(\frac{sin(\frac{-h}{2})}{\frac{h}{2}})}{cos(x+h)}]
=cosx5 [limh→0 cos(x+h)sin22x+h . \lim_{h\rightarrow 0}$$\frac{sin(-\frac{h}{2})}{\frac{h}{2}}] - 4sinx
=cosx5 .cosxsinx.1-4sinx
=5sec x tan x-4sin x
(iv) Let f (x) = cosec x. Accordingly, from the first principle,
f'(x) = limh→0 hf(x+h)−f(x)
f'(x)=limh→0 h1[cosec(x+h)−cosecx]
=limh→0 \frac{1}{h}$$[\frac{1}{sin(x+h)}-\frac{1}{sin\,x}]
=limh→0 h1[sin(x+h)sinxsinx−sin(x+h)]
=limh→0 h1 [2cos(2x+x+h). sin(x+h)sinxsin(2x−x−h)]
=limh→0 [sin(x+h)sinxcos22x+h.sin(2h)]
=limh→0 [sin(x+h)sinx−cos(22x+h).(2hsin2h)]
=(sinx.sinx−cosx).1
=-cosecx cotx
(v) Let f (x) = 3cot x + 5cosec x. Accordingly, from the first principle,
f'(x) = limh→0 hf(x+h)−f(x)
= limh→0 h3cot(x+h+5cosec(x+h))−3cotx−5cosecx
=3limh→0 h1[cot (x+4)-cot.x]+5limh→0 h1 [cosec (x+h) - cosec x] ...(1)
Now, limh→0 h1 [cot (x+h)-cot x]
=\lim_{h\rightarrow 0}$$\frac{1}{h} [sin(x+h)cos(x+h)−sinxcosx]
=limh→0 h1 [sinxsin(x+h)sin(x−x−h)]
=limh→0 h1[sinxsin(x+4)sin(−h)]
=-(limh→0 hsinh).(limh→0 sinx1-sin(x+h)
=-1. sinx1 sin(x+0) = −sinx1 = -cosec2x ...(2)
=limh→0 h1 [cosec(x+h)-cosecx]
=\lim_{h\rightarrow 0}$$\frac{1}{h}[sin(x+h)1−sinx1]
=limh→0 h1[sin(x+h)sinxsinx−sin(x+h)]
=limh→0 h1 [sin(x+h)sinx2cos(x+x+21).sin(x−x−2h)]
=limh→0 sin(x+h)sinx−cos22x+h.2hsin2h
=(sinx.sinx−cosx).1
=-cosecx cotx ...(3)
From (1), (2), and (3), we obtain
f'(x)=-3cosec2x-5cosec x cotx
(vi) Let f (x) = 5sinx-6cosx+7. Accordingly, from the first principle,
f'(x) = limh→0 hf(x+h)−f(x)
= limh→0 h1 [5sin(x+4)-6 cos(x+h)+7-5 sin x+6cosx-7]
= limh→0 h1 [5{sin(x+h)-sin x}-6(cos(x+h)-cos x}]
=5 limh→0 h1[sin(x+4)- sin x]-6limh→0 h1[cos(x+h)-cos.x]
=5limh→0 h1[2cos(x+h+2x) sin(x+h-2x) ] -6limh→0 cosxcosh – sin x sinh – hcosx
=5limh→0 h1[2cos(22x+h) sin(2h) ] -6limh→0 [h−cosx(1−cosh)−sinxsinh]
=5 limh→0 2cos(22x+h)2hsin2h−6limh→0[−cosxh1−cosh−sinxhsinh]
= 5 cos x. 1-6(-cos x).(0)-sin.x.1]
=5cosx+6sinx
(vii) Let f (x) = 2 tan x - 7 sec x. Accordingly, from the first principle,
f'(x) = limh→0 hf(x+h)−f(x)
= limh→0 h1[2tan(x+h)-7 sec (x+h)-2 tan x+7 sec x]
= limh→0 h1[2{tan (x+)-tan x}-7{sec(x+h)-sec.x}]
= 2limh→0 h1 [tan (x+h)-tan x]-7 limh→0 h1[sec(x+h)-secx]
=limh→0 h1[cos(x+h)sin(x+h)−cosxsinx] -7limh→0 h1[cos(x+h)1−cosx1]
=limh→0 \frac{1}{h}$$[\frac{sin(x+h)cos\,x-sin\,xcos(x+h)}{cosxcos(x+h)}]-7\lim_{h\rightarrow 0}\frac{1}{h}[\frac{cos\,x-cos(x+h)}{cos\,xcos(x+h)}]
=limh→0 \frac{1}{h}$$[\frac{sin(x+h-x)}{cos\,xcos(x+h)}]-7\lim_{h\rightarrow 0}\frac{1}{h}[\frac{-2sin\frac{x+x+h}{2}}{cos\,x-cos(x+h)}]
=2.1. cosxcosx1- 7.1(cosxcosxsinx)
=2 sec2x-7 sec.x tan.x