Solveeit Logo

Question

Question: Find the derivative of the following function from the first principle: \(\sin (x+1)\) ....

Find the derivative of the following function from the first principle: sin(x+1)\sin (x+1) .

Explanation

Solution

Hint: The given problem is related to differentiation. According to the first principle, the derivative of a function f(x)f\left( x \right) at x=ax=a is given as f(x)=limh0f(a+h)f(a)hf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h} .

Complete Step-by-step answer:
Before proceeding with the problem, let’s understand the concept of differentiation. The derivative of a function represents the slope of the graph of the function. The derivative of the function f(x)f\left( x \right) is denoted by f(x)f'\left( x \right) and is defined by the first principle as f(x)=limh0f(x+h)f(x)hf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} . The steps to determine the derivative of a function by the first principle are :
Step 1: Write down the formula for finding the derivative by the first principle.
Step 2: Determine the value of f(x+h)f\left( x+h \right) .
Step 3: Substitute it into the formula.
Step 4: Find the limit.
Now, the given function is sin(x+1)\sin \left( x+1 \right) .
Following the steps stated above, first we will write the formula for finding the derivative of the function by the first principle.
f(x)=limh0f(x+h)f(x)h\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} .
Now, we will find the value of f(x+ h) by replacing x by (x + h). The function is given as f(x)=sin(x+1)f\left( x \right)=\sin \left( x+1 \right) . So, the value of f(x+h)f\left( x+h \right) is given as sin(x+1+h)\sin \left( x+1+h \right) , which can be written as sin((x+1)+h)\sin \left( \left( x+1 \right)+h \right) . We know, sin(a+b)=sinacosb+cosasinb\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b . So, sin((x+1)+h)=sin(x+1)cos(h)+cos(x+1)sin(h)\sin \left( \left( x+1 \right)+h \right)=\sin \left( x+1 \right)\cos \left( h \right)+\cos \left( x+1 \right)\sin \left( h \right) .
On substituting the value of f(x + h) in the expression for derivative of a function, we get:f(x)=limh0sin(x+1)cos(h)+cos(x+1)sin(h)sin(x+1)hf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\cos \left( h \right)+\cos \left( x+1 \right)\sin \left( h \right)-\sin \left( x+1 \right)}{h}
Now, we will evaluate the limit. The expression that we have is:f(x)=limh0sin(x+1)cos(h)+cos(x+1)sin(h)sin(x+1)hf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\cos \left( h \right)+\cos \left( x+1 \right)\sin \left( h \right)-\sin \left( x+1 \right)}{h}
f(x)=limh0sin(x+1)(cos(h)1)+cos(x+1)sin(h)h\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\left( \cos \left( h \right)-1 \right)+\cos \left( x+1 \right)\sin \left( h \right)}{h}
f(x)=limh0sin(x+1)(cos(h)1)h+limh0cos(x+1)sin(h)h\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\left( \cos \left( h \right)-1 \right)}{h}+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+1 \right)\sin \left( h \right)}{h}
Now, we know sin(x+1)\sin \left( x+1 \right) is a function of xx and is independent of hh . So, limh0sin(x+1)(cos(h)1)h=sin(x+1)limh0(cos(h)1)h\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\left( \cos \left( h \right)-1 \right)}{h}=\sin \left( x+1 \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \cos \left( h \right)-1 \right)}{h}. Now, we know, limh0(cos(h)1)h=0\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \cos \left( h \right)-1 \right)}{h}=0 . So, f(x)=sin(x+1)×0+limh0cos(x+1)sin(h)h=limh0cos(x+1)sin(h)hf'\left( x \right)=\sin \left( x+1 \right)\times 0+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+1 \right)\sin \left( h \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+1 \right)\sin \left( h \right)}{h}. Now, we know, cos(x+1)\cos \left( x+1 \right) is a function of xx and hence, it is independent of hh . So, f(x)=limh0cos(x+1)sin(h)hf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+1 \right)\sin \left( h \right)}{h} can be written as f(x)=cos(x+1)limh0sin(h)hf'\left( x \right)=\cos \left( x+1 \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}. Now, we know, limh0sin(h)h=1\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}=1 . So, f(x)=cos(x+1)f'\left( x \right)=\cos \left( x+1 \right) .
Hence, the derivative of sin(x+1)\sin (x+1) is cos(x+1)\cos \left( x+1 \right) .

Note: While determining the derivative of the function, make sure to use the expansions and formulae of the limit properly. Some students write the expansion of sin(a+b)\sin \left( a+b \right) as sinacosbcosasinb\sin a\cos b-\cos a\sin b instead of sinacosb+cosasinb\sin a\cos b+\cos a\sin b . Also, some students write the value of the limit limh0sin(h)h=0\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}=0 instead of limh0sin(h)h=1\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}=1. Such mistakes should be avoided, as they can result in getting wrong answers.